
Open-Digital-Industrial and Networking pilot lines using modular

components for scalable production

Grant Agreement No : 101017141

Project Acronym : ODIN

Project Start Date : 1st January, 2021

Consortium : UNIVERSITY OF PATRAS – LABORATORY FOR MANUFACTURING

SYSTEMS AND AUTOMATION

FUNDACION TECNALIA RESEARCH & INNOVATION

KUNGSLIGA TEKNISKA HOEGSKOLAN

TAMPEREEN KORKEAKOULUSAATIO SR

COMAU SPA

PILZ INDUSTRIEELEKTRONIK S. L.

ROBOCEPTION GMBH

VISUAL COMPONENTS OY

 INTRASOFT INTERNATIONAL SA

 GRUPO S21SEC GESTIÓN, S.A.

 FUNDACION AIC AUTOMOTIVE INTELLIGENCE CENTER FUNDAZIOA

 DGH ROBOTICA, AUTOMATIZACION Y MANTENIMIENTO

INDUSTRIAL SA

 PSA AUTOMOBILES S.A.

 AEROTECNIC COMPOSITES SL. U.

 WHIRLPOOL EMEA SPA

Title : ODIN Networked Component initial prototype

Reference : D4.1

Availability : Public

Date : 30/06/2022

Author/s : S21SEC, INTRA

Circulation : EU, Consortium

Summary:

The purpose of this document is to present the design and initial prototype of:

a) OpenFlow communication and integration architecture and

b) Active DT Protection Framework and DT Intelligent Threat Analysis Toolkit

ODIN 101017141

-2-

Table of Contents

LIST OF FIGURES ...4

LIST OF TABLES ...5

EXECUTIVE SUMMARY ...6

1. INTRODUCTION ...8

2. OPENFLOW ..10

2.1. Introduction ...10

2.2. Features ...11

2.2.1. Orchestrate Modules and Resources ..11

2.2.2. Emulation ...12

2.2.3. Simulation ..12

2.2.4. React on Shopfloor Events ...13

2.2.5. React on Safety Events ..13

2.2.6. React on Security Events ...13

2.2.7. Control & Monitor Task and Action Execution Flow14

2.2.8. Monitor Network Software Modules Status ..15

2.2.9. Control OpenFlow Execution Flow ...15

2.2.10. Request Replanning ...16

2.2.11. Validate Open Schedules ...16

2.2.12. OpenFlow Knowledge Repository ...17

2.2.13. Information Exchange with ERP systems ..18

2.2.14. User Interface ...19

2.3. Design ...26

2.4. Initial Prototype ..27

3. CYBERSECURITY ...29

3.1. Introduction ...29

3.2. Features ...29

3.2.1. Threat modelling and attack surface definition29

3.2.2. Detection ..30

3.2.3. Response ..30

3.3. Design ...31

3.3.1. Attack modelling methodology ..31

3.3.2. ODIN network architecture ..31

ODIN 101017141

-3-

3.3.3. Cybersecurity Module Architecture ...32

3.3.4. Validation ...34

3.4. Initial Prototype ..34

3.4.1. Prototype environment ...34

3.4.2. Attack scenario ...35

3.4.3. Cybersecurity module implementation ..41

3.4.4. Initial integration and testing ...43

4. CONCLUSIONS ...48

5. GLOSSARY ..49

6. REFERENCES ..50

7. ANNEX A: MAGMA ADAPTATION TO INDUSTRIAL NETWORKS51

7.1. Steps of the Analysis ...51

7.2. Step 1 - Definition of the Scope ..53

7.3. Step 2 - Identification of the relevant assets and Entry Points55

7.3.1. Central Control Station ..55

7.3.2. Certification Authority ...55

7.3.3. Historian Database ...56

7.3.4. Control Station ...56

7.3.5. Controller ...56

7.4. step 3 - Analyse Potential Drivers and References in MaGMa58

7.4.1. Potential Drivers and References in the Ros-based Scenario58

7.5. Step 4 – Generation of the L1 Use Cases ...59

7.5.1. L1 Use Cases for the ROS-based Scenario ..60

7.6. Step 5 – Generation of the L2 Use Cases ...60

7.7. L2 Use Cases for the ROS-based Scenario ...62

7.8. Step 6 – Generation of the L3 Use Cases ...64

7.8.1. L3 Use Cases for the ROS-based Scenario ..64

7.9. Interpretation of the Metrics ...66

7.10. References ...68

ODIN 101017141

-4-

LIST OF FIGURES
Figure 1: ODIN Reference Architecture - Component Level Diagram 9
Figure 2: OpenFlow modules orchestration ... 11
Figure 3: OpenFlow: Request Replanning ... 16
Figure 4: OpenFlow KR: User, Product Plan, Schedule Data Model 17
Figure 5: Information Exchange with AEROTECNIC - SAP ... 19

Figure 6: OpenFlow UI: Login Page ... 19
Figure 7: OpenFlow UI: Schedules Tab .. 20
Figure 8: Open Flow UI: Execution Status Tab ... 20
Figure 9: Options while Schedule is running ... 21
Figure 10: Options while Schedule is paused .. 21

Figure 11: Tasks Execution Status ... 21
Figure 12: Actions Execution Status.. 22

Figure 13: White Goods preliminary pilot case demo - Tasks diagram 23

Figure 14: Open Flow UI: Product Plans Tab ... 24
Figure 15: Open Flow UI: Resources Tab ... 24
Figure 16: Open Flow UI: Resource’s modules .. 25
Figure 17 : OpenFlow Initial Prototype Interfaces Design .. 26

Figure 18: ODIN Preliminary White Goods Pilot Case deployment diagram 27
Figure 19: ODIN Network Architecture based on IEC 62443 / ISA99 model 32

Figure 20: ODIN Network Architecture with Cybersecurity tools integrated 33
Figure 21: ODIN Networked Component Emulation .. 35

Figure 22: ODIN Architecture interactions flow ... 36
Figure 23: OpenFlow publishers and subscribers list .. 37
Figure 24: MITRE Matrix filtered for ICS domain ... 39

Figure 25: ODIN Cybersecurity System general implementation ... 41

Figure 26: ODIN Cybersecurity System detailed implementation .. 43
Figure 27: ODIN Cybersecurity System detailed implementation .. 44
Figure 28: Event detected in the SIEM .. 44

Figure 29: Automated case management in Shuffle .. 45
Figure 30: Alert management in The Hive .. 46

Figure 31: Alert scalation to case in The Hive .. 47
Figure 32: Steps of MaGMA use case framework for a given scenario 52
Figure 33: Relative reference in the formulas of the MaGMA tool .. 53
Figure 34: Modified formulas in the MaGMA tool ... 53

Figure 35: Use case architecture diagram .. 54
Figure 36: Threat categories proposed in MaGMA to serve as an overview of the use cases 59
Figure 37: Examples of the L2 use cases provided by MaGMa .. 61
Figure 38: Example of the selected L2 use cases for the ROS-based scenario 63

Figure 39: Example of the generated L3 use case for the ROS-based scenario 65
Figure 40: Colour scale used in MaGMa ... 66
Figure 41: Example of an optimal deployed use case .. 67

Figure 42: Generated dataset of the metrics defined in MaGMa ... 67

ODIN 101017141

-5-

LIST OF TABLES
Table 1: OpenFlow features ... 10
Table 2: White Goods preliminary demo, ActionLib server ROS Nodes 12
Table 3: OpenFlow Simulating Interfaces ... 13
Table 4: OpenFlow security interface .. 14
Table 5: OpenFlow Implemented Action Interfaces .. 14

Table 6: White Goods preliminary demo tasks .. 18
Table 7: OpenFlow UI: Navigation Tabs... 19
Table 8: Summary of the assets in the network of the use case and their properties............... 57

ODIN 101017141

-6-

EXECUTIVE SUMMARY

This deliverable is the result for M18 initial prototype of the ODIN Network Component,

comprising the outcome of tasks T4.1 “Reference integration and communication architecture

for reconfigurable production” and T4.2 “Cybersecurity and data processing in autonomous

production environments”. The document describes the “ODIN Networked Component”

including a) OpenFlow module, responsible to integrate, orchestrate, manage and coordinate

production resources to execute manufacturing schedules, and b) the Cybersecurity module

responsible to provide detection and response capabilities on the deployed Network

Component.

The initial prototype of the OpenFlow module is a functional initial prototype able to integrate,

orchestrate and manage other modules. The initial prototype of OpenFlow module includes

the following functionalities:

• Orchestration of Modules and Resources,

• Emulated execution of a production schedule,

• Simulated execution of a production plan in a 3D virtual environment,

• Reaction on Shopfloor Events (Execution failure events and recovery strategies),

• Reaction on Safety Events (Safety violation events and recovery strategies),

• Reaction on Security Events: (Security violation events and recovery strategies),

• Control, Monitor Task and Action Execution Flow,

• Monitoring of Network Software Modules Status,

• Controlling of OpenFlow Execution Flow,

• Request execution task replanning,

• Validation of Open Schedules,

• OpenFlow Knowledge Repository,

• Information Exchange with ERP systems,

• UI offering control, monitoring, and views of OpenFlow functionalities to end user.

A prototype for ODIN Cybersecurity solution is also described and including the process and

methodology for ODIN threat modelling and describing a cybersecurity toolkit for incident

detection and response. In particular, the modelling and monitoring protection will be focused

on the scope of the ODIN Networked component (OpenFlow).

Different methodologies for threat modelling, like MaGMa [15] and MITRE ATT&CK [13]

have been analyzed, and using both approaches it has concluded on a particular attack

modelling methodology definition. The resultant threat model for ODIN will include a set of

selected techniques that can be used for a hypothetical attack to the ODIN Networked

component.

Two main components of the Cybersecurity module are. Incident detection and Incident

Response. In terms of detection, the implementation of detection is based on Security

Information and Event Management (SIEM) tools, with the capabilities of collection of raw

data from the network and systems and event generation. In terms of response, the

implementation is based on Security Orchestration, Automation and Response (SOAR) tools,

with the capabilities of automation workflows definitions that derive in incident response and

further Security Operation Center SOC management approach.

A proposal for the ODIN network architecture, coherent and based on former ISA 99, and

recent IEC 62443 and NIST 800-82 as reference frameworks, that proposes security in the

ODIN 101017141

-7-

design of industrial networks, has been also including highlighting the SIEM and SOAR

components on the deployed architecture.

Initial attack scenario has been defined along with the attack surface analysis to identify the

elements with which the OpenFlow interacts, and the interfaces through which an attack exploit

could be performed. An adapted threat model is designed, using Cyber Kill Chain for

OpenFlow, and different applicable tactics are selected from the MITRE ATT&CK and

MaGMa frameworks, included as an ANNEX.

Cybersecurity solution is described as deployed and integrated in the prototype environment.

Actual stage of the project includes a SIEM agent in an endpoint with the emulated OpenFlow,

that collects logs, detects the security events and sends them to the SIEM server, where this

information is collected, normalized and correlated, so that security alerts are raised based on

their criticality. These alerts are latter sent to the SOAR system, where they are further

investigated to allow the appropriate case management and reactive response.

SIEM and SOAR interconnection are built up using opensource software with Wazuh and

TheHive, described as cybersecurity toolkit. Finally, an example of the Brute Force technique

is presented, showing the full chain of detection and response by the ODIN Cybersecurity

System for this attack.

ODIN 101017141

-8-

1. INTRODUCTION

This deliverable describes the concept, features design and implementation of the ODIN

Network Component, focusing in the initial prototype as well as presenting the design of the

final version. The design and development of the Network Component follows an agile

approach and its design follows closely the design and development of the other ODIN modules

as well as the ODIN Pilot Cases. The ODIN Network Component is presented from the

perspective of its two modules. More precisely the OpenFlow initial prototype is presented in

section 2 and the Cybersecurity module that is presented in section 3.

The OpenFlow initial prototype is comprised of the initial prototypes of the Knowledge

Repository, the OpenFlow Core component, the OpenFlow emulation engine and the

OpenFlow UI. It is responsible to integrate the software system of the ODIN architecture and

orchestrate ODIN modules to robustly and efficiently execute the production schedule.

The OpenFlow is a functional initial prototype that also demonstrates integrated functionalities.

In particular it has been used in the preliminary White Goods small case demo (M12) and in

M18 White Goods and Automotive small scale integrated demos in M18 of project

development. The initial prototype used as input the ODIN Reference architecture described in

D1.4 and provides most of the presented functionality in Network Component of D1.4 too. The

functionalities which have been used in the M18 Pilot Cases are presented in Section 2.

ODIN OpenFlow is a robust integration platform that orchestrates and monitors Human-Robot

Collaboration (HRC) systems and their modules to safely execute a manufacturing process and

respond to real-time unprecedented evets taking place through the process. The ODIN

OpenFlow based integrated system is composed by four main components. Figure 1 presents

the high-level abstract components described in ODIN Reference Architecture in D1.4.

The transition of ODIN features from WP2 and WP3 to actual data models and interfaces is

based on technological partners’ collaboration. These interfaces were described in ODIN

Project Architecture and are presented in Section 2.2.7.

The initial prototype of OpenFlow has been released as a docker image hosted in a private

docker repository of LMS for distribution only inside the ODIN consortium and for the project

needs. Further to this version, an initial version was developed for the preliminary White Goods

demo that allowed integration and testing. Additionally, it was used to get early feedback from

developers and pilot case responsible partners.

More information is provided in section 2 of this document, which provides a detailed overview

of the current implementation state of OpenFlow module as well as the direction for future

development, although the design and planning of the developments in WP4 mostly take place

in an agile way. In particular Section 2 describes the architecture followed in the

implementation of OpenFlow and presents the following:

• Design and development of OpenFlow sub-modules.

• Implemented interfaces to described server modules presented in ODIN Project

Architecture.

• Distribution of ODIN OpenFlow integrated system through docker images.

• ODIN implemented features offered by the current implementation of OpenFlow

module.

ODIN 101017141

-9-

Figure 1: ODIN Reference Architecture - Component Level Diagram

The ODIN Cybersecurity initial prototype is described in section 3. Section 3.2 presents its

three main features, namely the threat modelling, detection and protection. Section 3.3 presents

the design of the system, through the attack modelling methodology, the solution architecture

and the validation. Finally, section 3.4 describes the initial prototype through the prototype

environment, attack scenario and detection and response solution.

ODIN 101017141

-10-

2. OPENFLOW

2.1. Introduction
This section aims to present the OpenFlow first prototype module, and details of the

orchestration process that takes place under the hood. In addition, this section describes the

user interface (UI) of OpenFlow first prototype, including the visualization of the orchestration

process. The first prototype version of the OpenFlow module has been based on the OpenFlow

Architecture as well as the ODIN Architecture specifications of D1.4. OpenFlow interoperates

and manages different ODIN modules to the features that are presented in Section 2.2. These

features were presented in D1.4 and are implemented through the development phase of WP4.

Table 1 summarizes the OpenFlow features.

Table 1: OpenFlow features

OpenFlow Features

Orchestrate Modules and Resources

Emulation

Simulation

React on Shopfloor Events

React on Safety Events

React on Security Events

Control & Monitor Task and Action Execution Flow

Monitor Network Software Modules Status

Control OpenFlow Execution Flow

Request Replanning

Validate Open Schedules

OpenFlow Knowledge Repository

Information Exchange with ERP systems

User Interface

Due to its modular architecture, the OpenFlow integration software system is flexible and

extensible to support, with low effort, new functionalities and adjustments to modules that

aroused through the development and testing phase in small-scale pilot cases. This also adheres

to the norm induced from the increasing product variety in an industrial environment [3] and

the need of mass customization to be able to handle such ranges in different products

manufacturing process [1,2].

Following the context of modern Industry 4.0, OpenFlow modules offer interfaces for the

actuation of Actions and their “actuator” subject. For instance, OpenFlow can orchestrate

actuator submodules by communicating with them and initiating an actuation model by an

Action or cancel an already ongoing action. The design and integration principles for such

behaviour are presented in Section 1.1.

Finally, Section 2.4 presents the current version of OpenFlow, with the designed and

implemented features through WP4 until the scope of this deliverable on M18 of the project.

ODIN 101017141

-11-

2.2. Features
This section describes the currently designed features as well as the implementation status of

the first OpenFlow prototype.

2.2.1. Orchestrate Modules and Resources

Orchestrating different modules is an essential process in a human-robot collaborative

environment, and it has been demonstrated in use cases derived from the automotive industry

in which human operators involved into and were part of the manufacturing process [6,7].

OpenFlow is the module responsible for the orchestration of other modules, as described in the

ODIN Reference Architecture in D1.4. An OpenFlow based system is composed from different

submodules that have to be monitored and orchestrated. OpenFlow utilizes peer-to-peer and

publish-subscribe communication protocols to enable centralized control of its submodules.

The orchestration engine that manages OpenFlow modules is part of the OpenFlow Core

submodule, and it is responsible for the features presented in this section. The main objective

of the orchestration module is to successfully execute a production Schedule in order to

complete a pre-defined manufacturing process. Therefore, besides orchestration, OpenFlow

takes into account real-time data about the availability and suitability of manufacturing

resources, to safely execute the required actions.

The OpenFlow is capable to change the execution flow of a production process, react to events

and dispatch appropriate actions to ensure that the production is complete.

Figure 2: OpenFlow modules orchestration

Figure 2, depicts in high level the internal modules οf OpenFlow. The OpenFlow User Interface

is described in detail in 2.2.14. The OpenFlow Knowledge Repository, which is responsible

for persisting the required data is presented thoroughly in 2.2.12. OpenFlow Emulation Engine

can imitate the execution of a production Schedule in an emulated environment for testing

purposes by emulating all necessary interfaces and resources and it is presented in section 2.2.2.

Planning the production is a key functionality of production system. OpenFlow integrates and

interoperates closely with the AI Task Planner module which is in charge of planning and

ODIN 101017141

-12-

replanning the Tasks that need to be performed. For the purpose of execution, these Tasks into

Actions are converted in executable production Schedules. This process is depicted in 2.2.10,

while the Task Planner User Interface allows the User to manually adjust and create a

production Schedule.

2.2.2. Emulation

The OpenFlow includes an emulation engine that can create and start responsive emulated

interfaces for all OpenFlow managed resources (Figure 2). The OpenFlow emulation engine

emulates the interfaces of other modules and their responses providing a realistic emulation

environment with an API identical to the real one.

In this way the OpenFlow can setup an emulated (virtual) environment that is comprised of

emulated modules and execute an OpenFlow production Schedule in the emulated

environment.

The emulation is focused in the communication and information exchange between modules.

Execution of Schedules in virtual environments where the modules are represented in more

detail, including the space geometry can be handled also by OpenFlow in the simulation

functionality that is covered in section 2.2.3.

In addition to the actual process orchestration in real production applications, the need of

emulating a robotic environment is also important in multiple occasions. Emulation allows for

validation of the cohesion between Schedules Actions prior to their actual execution. The

emulation can run not only in the nominal duration of the real time execution but also in much

less time. This means that an emulated execution of a complete schedule only requires a

fragment of the time the actual execution takes, thus speeding up the testing and development

process.

The emulated modules comply with ROS and have specifically assigned node names.

For instance, the emulated module interfaces that are managed and emulated by OpenFlow for

the successful implementation of the White Goods demo in an emulating environment are

displayed in Table 2 below.

Table 2: White Goods preliminary demo, ActionLib server ROS Nodes

Action Name ActionLib server ROS Node path

Execute Human Task /emulation/operator_support/integration/node/execute_human_task

Control Gripper /emulation/gripper/integration/node/control_gripper

Control Tool changer /emulation/tool_changer/integration/node/control_toolchanger

Move Arm Joint /emulation/cobot/integration/node/move_arm_joint

Configure Payload /emulation/configure_payload/integration/node/configure_payload

Configure TCP /emulation/configure_tcp/integration/node/referenced_execution

2.2.3. Simulation

While Emulation (presented in section 2.2.2) is mimicking the complete sequence of steps

required for the execution of a production Schedule, which is beneficial for testing and

development phases, it is essential to further test a production Schedule on a simulated

environment prior to its actual deployment in a real scale robotic application. A simulated

environment visualizes the real environment into a 3D software world in which the actual

movement of a robot resource can be tracked, and its interference can be tested with any other

physical 3D object in its surroundings. Simulation’s goal is validating and verifying any

ODIN 101017141

-13-

concerning factors in a robotic product line environment prior to their actual installation so that

the optimal configuration can be selected [2].

OpenFlow can connect and control resources that are simulated. The actions required for the

completion of a production Schedule on a real or emulated environment, are interfaced in a

simulating mode too. Additionally, specific simulating actions have been designed and

implemented to interface and aid the management of 3D objects. Table 3 below presents the

interfaced Actions that initiate a simulation and spawn or remove an object in the simulation

scene.

Table 3: OpenFlow Simulating Interfaces

Client

Module
Implemented Interface Description

Server

Module

OpenFlow Simulate Initiates simulation

Digital

Simulation

OpenFlow Spawn Dynamic Object
Spawns a Dynamic Object on a

simulation scene at specific Pose.

OpenFlow Vanish Dynamic Object
Removes Dynamic Object from a

scene.

OpenFlow
Control Assembly

Hierarchy

Control Assembly Hierarchy in

Simulation Environment

2.2.4. React on Shopfloor Events

Validated use-cases have shown that monitoring of shopfloor events is a highly regarded factor

to consider while designing and implementing mobile robotic applications in the automotive

industry [4].

OpenFlow module is capable of coordinating and orchestrating external resources to monitor

and respond Shopfloor Events. In current iteration of D4.1 through M18, a first prototype with

basic functionality has been implemented and will be further developed and integrated with the

appropriate models to react on shopfloor events in the future.

2.2.5. React on Safety Events

OpenFlow has a dedicated Safety module to address safety Events that can arise at any stage

during the execution of a production Schedule. This module has a very short latency to capture

and address security triggers as fast as possible and provide solutions to recover the system and

continue the manufacturing production. In current development stage, there is a test safety

module which will be further improved and developed to address actual safety events in the

future.

2.2.6. React on Security Events

In a production line environment in which human and robots share workspace [5], the need to

react on security induced events is essential.

OpenFlow offers interfaces to specific event topic listeners and can monitor and evaluate

arrived message and provide specific tailored response to address such events. Responses to

events may include the following:

➢ Email notifications about security events.

➢ Actuation of other implemented action interfaces required to address a security raised

event.

ODIN 101017141

-14-

➢ Stop or resume a production Schedule according to the security event type or severity.

➢ Notify Operators about security events.

To address the Security events OpenFlow implements the following interface for the security

topic as described in ODIN Project Architecture.

Table 4: OpenFlow security interface

Client

Module

Implemented

Topic

Interface

Server Module

OpenFlow Security

Event
Cyber Security

Messages that arrive to this topic include specific event ID, event type and severity level upon

which a Subscriber ROS Node on OpenFlow will associate specific patterns and raise the

respective alert Events.

2.2.7. Control & Monitor Task and Action Execution Flow

OpenFlow has the ability to coordinate, monitor and execute a stored production Schedule

through its orchestrator module. Orchestrator leverages the Actor model to handle the actuation

of Schedule’s actions as this offers immutable data exchanging during execution which is

considered a quite robust feature for communication in a robotic environment [8].

OpenFlow utilizes customizable data models for each implemented action. Such data models

use the required interface protocol to connect with different modules interfaces. In ROS-based

systems, such as the ODIN, the ActionLib protocol is often used because it allows Clients to

control, configure action’s goal and receive status updates during and after the execution of

each action [8]. Multiple interfaces are currently consumed by the OpenFlow module. Table 5

below contains the interfaces whose clients are currently offered by OpenFlow to the modules

described in ODIN Project Architecture.

Table 5: OpenFlow Implemented Action Interfaces

Client Module Implemented Interface Server Module

OpenFlow Move Arm to TF Frame

Cobot
OpenFlow Move Arm Joint

OpenFlow Move Arm Cartesian

OpenFlow Control Arm Mode

OpenFlow Execute Skill
Easy Programming

OpenFlow Execute Skill Referenced

OpenFlow Configure Tools

End Effector

OpenFlow Control Arbitrary Tool

OpenFlow Control Gripper

OpenFlow Control Tool Changer

OpenFlow Trigger Screwdriver

OpenFlow Detect Object Environment Perception

OpenFlow Configure Detection Human Detection

OpenFlow Move Arm Cartesian
Mobile Robot

OpenFlow Move Arm Joint

ODIN 101017141

-15-

Client Module Implemented Interface Server Module

OpenFlow Navigate

OpenFlow Control Trajectory Tracking

Operator Support

OpenFlow Execute Task Synchronous

OpenFlow Execute Task Synchronous Referenced

OpenFlow Operator Support display configuration

OpenFlow Show Notification

OpenFlow Set Safety Border Projection

Projector Interface

OpenFlow Set Light Indication Projection

OpenFlow Set Preset UI Projection

OpenFlow Set Instructions Projection

OpenFlow Set Virtual Buttons Projection

OpenFlow Unset Any Projection

OpenFlow Cartesian Goal Motion Control

Task Planning
OpenFlow Joint Goal Motion Control

OpenFlow Referenced Goal Motion Control

OpenFlow Task Planning

The actions Clients are implemented with extensibility and maintainability in mind so that any

new requirements (e.g., new field attributes in actions definition) can be easily integrated into

the existing data models with minimal effort. Additionally, configuration options, such as if an

action can be paused or not while its active and what actions may be executed after each action,

offer control upon the Schedule’s execution flow. These configuration options are persisted

alongside the Schedule’s actions in Knowledge Repository 2.2.12.

OpenFlow UI takes over of OpenFlow’s under the hood features and offers a user-friendly

interface to visualize execution flow of a Schedule to user by displaying status for each Task

and Action of a production Schedule. OpenFlow UI is thoroughly presented in 2.2.14.

2.2.8. Monitor Network Software Modules Status

As OpenFlow system is itself a modular system and part of the ODIN software system, it can

constantly monitor the status of other modules and communicate with specific actuator

components of other modules to address temporary failures. This feature is currently under

development and will be included in feature releases. The current draft implemented version

can react when a module’s software interface cannot be accessed by attempting to reconnect.

This behavior is configurable and can be customized to fit different scenarios.

Future versions will be able to detect in advance the status of specific modules and the available

services and react on specific occasions. For instance, trigger a rescheduling in case a cobot

module is not available so that the AI Task Planner could request a human to execute a task

instead.

2.2.9. Control OpenFlow Execution Flow

OpenFlow Core has the ability to initiate the execution of a Schedule or pause, stop or cancel

it while its running and resume gracefully when it is paused. To achieve such functionality

OpenFlow implements interfaces for the following ROS Action Servers:

• Start New OpenFlow Schedule Execution

ODIN 101017141

-16-

This service takes as input the id of a stored Schedule inside Knowledge Repository or a

completely new Schedule in json format and starts its execution, while it allows for

execution status to be updated through feedback and result definition in Action file.

• Control OpenFlow Schedule Execution

This service takes as input the id of the running Schedule and a specific type of command

which can be resume, pause, stop or cancel the execution. Pause and resume options are

mutually dependent as they require the schedule to be running or stopped. Cancel option

stops the active Tasks and actions. These options are exposed in the OpenFlow User

Interface through buttons and are presented in Figure 9 and Figure 10.

2.2.10. Request Replanning

OpenFlow has the ability to communicate with the AI Task Planning module to request the

replanning of a Schedule that is paused either by the user or triggered by an event that

OpenFlow had to stop the execution. Replanning can be invoked only on a stopped a Schedule.

OpenFlow invokes the Task Planning ROS Action Server of AI Task Planning module which

uses the remaining unfinished Tasks and available Resources to create a new Schedule as

described in D1.4. Once OpenFlow retrieves the new Schedule, it stores it in Knowledge

Repository as an available Schedule for execution. Afterwards Schedule is loaded for execution

and displayed in OpenFlow UI as a new Schedule. User can take any actions offered by

OpenFlow on this Schedule as on any other regular Schedule. Figure 3 presents the data

exchange between OpenFlow and AI Task Planning module.

Figure 3: OpenFlow: Request Replanning

The development of the AI Task Planning advanced functionality is currently work in progress.

The first set of designed interfaces have been developed and are included in the OpenFlow

initial prototype.

2.2.11. Validate Open Schedules

OpenFlow can validate Schedules in Knowledge Repository before their execution to ensure

their integrity and cohesion. As described in 2.2.7, OpenFlow uses the Actor model to manage

ODIN 101017141

-17-

the actuation of Schedule’s tasks and actions. In order for the Actor responsible to execute the

Schedule to be created, this validation check is required. The validation can inform about

syntactic errors and prevent the execution of erroneous schedules. The validation functionality

not only informs that there are errors but also provides some information that help identify the

source of the error.

A Schedule consists of many interconnected metadata residing inside Knowledge Repository

such as its Tasks, Actions and Resources, of which are often referenced during execution

through their unique identifier ID. Some of the validations and verification checks are the

following:

➢ Verify that all collections of Actions, Resources and Tasks of a Schedule are populated

and not empty.

➢ Verify that the Actions identifiers IDs for each set of next Actions to execute, can be

identified and sourced to actual Actions that exist in KR.

➢ Verify that the Actions identifiers IDs which are part of a Task, can be identified and

sourced to actual Actions that exists in KR.

2.2.12. OpenFlow Knowledge Repository

OpenFlow Knowledge Repository (KR) module is a submodule of OpenFlow and is

responsible for modelling and maintaining the required information for OpenFlow core

functionalities. This information ranges from Users and Product Plans to Schedules, Resources

and network interface definitions. KR is designed following the Domain Driven Design (DDD)

whereas for each OpenFlow specified domain context it offers factories, repositories and

services for efficient Create, Read, Update, Delete (CRUD) operations of domains [11]. KR

utilizes MongoDB to implement the aforementioned functionalities.

Figure 4 shows part of the data Model implemented in KR for Users, Product Plans and

Schedules for execution.

Figure 4: OpenFlow KR: User, Product Plan, Schedule Data Model

Additionally, Knowledge Repository maintains and imports the datasets required for all ODIN

Pilot Cases. Such datasets include among others the required tasks, resources and suitabilities

ODIN 101017141

-18-

following the architecture in D1.4. In the scope and implementation of current deliverable the

preliminary White Goods and Automotive M18 pilot cases are persisted in KR.

For instance, the set of Tasks persisted in Product Plan of the preliminary White Goods pilot

case, following the requirements specified in D1.1 and adjustment iterations following the agile

approach, are presented in Table 6 below.

Table 6: White Goods preliminary demo tasks

White Goods Preliminary demo Tasks

Get Parallel Gripper

Pick Knob from kitting table

Place Know to assembly table

Leave Parallel Gripper

Get Magnetic Gripper

Pick Transformer from kitting table

Place Transformer to assembly table

Pick Medium Cooktop from kitting table

Place Transformer in the oven

Place Medium Cooktop assembly table

Pick Big Cooktop from kitting table

Place Big Cooktop to assembly table

Pick Small Cooktop from kitting table

Place Small Cooktop to assembly table

These Tasks, alongside with their Resources and Actions are used to generate an execution

Schedule which is stored in Knowledge Repository too [8]. Furthermore, Knowledge

Repository stores the Action models described in 2.2.7.

2.2.13. Information Exchange with ERP systems

For the seamless integration of ODIN OpenFlow in a manufacturing environment, the need to

communicate and receive product and resources information from external software systems

has been described in D1.5. Such systems include ERP, PLM, MES and SCADA.

OpenFlow has the ability to connect with an external ERP system based on SAP and receive

required information for production orders. This feature is currently under development and

during WP4 through M18, a connection has been established with the ERP system of

AEROTECNIC utilizing Java interfaces of SAP Java Connector module.

Information through the established connection included quantity, production number and due

time of a production order and the data OpenFlow will be able to share with ERP consist of

order status updates and an estimation of the expected successful completion of the order.

Additionally, data retrieved would include the locations on the shopfloor a Fan Cowl has to be

transported by mobile robots during its order execution. Figure 5 below presents the

aforementioned information exchange with the ERP system.

ODIN 101017141

-19-

Figure 5: Information Exchange with AEROTECNIC - SAP

2.2.14. User Interface

OpenFlow User Interface (UI) is the central getaway between the OpenFlow and the user. It

offers a user-friendly environment to control, monitor and view information such as the

available Product Plans, Execution Schedules and Resources.

The OpenFlow UI consists of five main Tab pages that provide functionality related to the

concepts described above. Table 7 below presents the navigation tabs in the OpenFlow UI main

page.

Table 7: OpenFlow UI: Navigation Tabs

Tab Name Description

Execution Status Monitoring and controlling execution of Schedules

Schedules Schedule selection & information

Product Plans Create Schedules from available Product Plans

Resources Available Resources and Network Resources

2.2.14.1. Login Page

Figure 6: OpenFlow UI: Login Page

Login Page offers a user-friendly, simple login functionality to OpenFlow UI. Currently users

belong to one company and can only view the information of the company they belong to. One

company per pilot case has been created. Upon logging in, the OpenFlow redirects the user to

ODIN 101017141

-20-

the Schedules Tab. The user can create new Schedules by navigating to the Product Plans tab

and select to plan a new Schedule as described in section .

2.2.14.2. Schedules Tab

Figure 7: OpenFlow UI: Schedules Tab

The Schedules Tab displays all the available schedules that are visible to the user. A Schedule

can be generated from the AI Task Planner for a specific Product Plan. The Schedules Tab

offers access to visual representations of the required Resources of each Product Plan and

information about these Resources, Schedule’s Tasks and Actions and Events. Finally, this tab

offers the functionality to select a Schedule for execution by clicking the related “Select” button

in the Execution column.

2.2.14.3. Execution Status Tab

The OpenFlow UI Execution Status Tab provides information about a running schedule and

offers control options to the user, effectively allowing to control the production execution. The

Execution Status Tab is only enabled if a schedule is selected for execution. For instance, the

Execution Status Tab is not enabled in Figure 7. In order to see the status tab, the user needs to

select a Schedule as described in section 2.2.14.2. Selecting a Schedule will enable and redirect

to the new Execution Tab shown in Figure 8, that shows an instance of the enabled Schedule

Status Tab.

Figure 8: Open Flow UI: Execution Status Tab

ODIN 101017141

-21-

The OpenFlow UI Execution Status Tab enables the control of a Schedule and offers

visualization of the execution in Task level or in the Action level which is more detailed.

• Controlling the execution of Schedule.

Start button starts the execution of the selected Schedule and enables the Pause-Resume &

Cancel buttons.

While the Schedule is running, the User has the option to pause the current execution and

resume it later on demand.

Figure 9: Options while Schedule is running

The Pause button is replaced by the Resume option if the Schedule is already paused as

shown in Figure 9. The Cancel Button cancels the Tasks & Actions that are active. The UI

Controls are then updated to only allow the user to Start the Schedule from the first Task

again.

Figure 10: Options while Schedule is paused

Additionally, when the Schedule is paused or stopped, the User can reschedule the

remaining Tasks as a new Schedule ready for execution through the Reschedule button in

Figure 8.

• Schedule Status Visualization functionality

The Execution Status Tabs offers real time monitoring on the status of Tasks & Actions as

well as visualizing the Schedule in a Graph.

o Task Execution Status

Figure 11: Tasks Execution Status

ODIN 101017141

-22-

While the Schedule is running, the status of the Tasks is constantly updated to show the

actual execution status. The Tasks consist of many actions and offer a higher level of

abstraction and observation. The screenshot in Figure 11 shows tasks in different status

at the same screen.

Figure 12: Actions Execution Status

o Action Execution Status

Similar to the Task Execution Status, the Actions Execution tab panel displays actions

names, their resources and Task and their status as shown in Figure 12. The Actions are

atomic execution steps that are part of a higher-level Task abstraction.

o Actions & Tasks diagrams

The OpenFlow UI can graphically depict the Execution Schedule in either Action or Task

level granularity. Actions and Tasks diagram option in Execution Status Tab offers

visualization of the sequence of required actions and tasks respectively in order to

execute a complete Schedule. A new diagram is generated for each case and a new page

will load displaying the respective graph. Figure 13 shows the task diagram of the

preliminary White Goods pilot case. Due to the size of the diagram a zoomed in part has

been added.

ODIN 101017141

-23-

Figure 13: White Goods preliminary pilot case demo - Tasks diagram

2.2.14.4. Product Plans Tab

Product Plans tab displays the available Product Plans to a logged in User, which as described

in 2.2.12. maintain the necessary data that can be used to generate a Schedule. Figure 9 shows

the available product plans for White Goods pilot case. Each Product Plan can be used to

generate a Schedule through the Plan New Schedule option.

ODIN 101017141

-24-

Figure 14: Open Flow UI: Product Plans Tab

If the User logins into the OpenFlow UI for the first time, he has to create a Schedule through

Product Plans tab.

2.2.14.5. Resources Tab

Resources Tab displays all available resources to the company the User belongs to, which can

be assigned as resources in Tasks and Actions of Schedules. Figure 15 shows the Resources of

White Goods pilot case as described in 2.2.12.

Figure 15: Open Flow UI: Resources Tab

Additionally, Modules column on each resource displays the available Network Resources that

can be utilized from this resource in a Schedule. Figure 16 shows the available ActionLib

Servers of ur10-Cobot for White Goods use case.

ODIN 101017141

-25-

Figure 16: Open Flow UI: Resource’s modules

ODIN 101017141

-26-

2.3. Design

Figure 17 : OpenFlow Initial Prototype Interfaces Design

ODIN 101017141

-27-

Figure 17 presents the implemented Actions Interfaces that OpenFlow orchestrates to offer the

features described in section 2.2 adhering to the architecture defined in D1.4. OpenFlow

structure facilitates adding interface connections. This modular structure allows to future-proof

the scalability and extensibility of OpenFlow to adjust on any new requirements that are going

to emerge through the development phase of WP4.

The interfaces of Figure 17 are available to use into the production Schedules of the described

Pilot Cases for testing and further development. For instance, for the preliminary White Goods

Pilot case, OpenFlow had to orchestrate the actuation of Actions of a Cobot robotic system.

Figure 18 below presents the design of the implemented system for the preliminary Pilot Case

which besides the Cobot had to manage interfaces for Operator’s Actions too.

Figure 18: ODIN Preliminary White Goods Pilot Case deployment diagram

2.4. Initial Prototype
OpenFlow module is developed in Java and for storage purposes and data persistence

MongoDB is used. Data maintenance follows the repository pattern to accomplish the

functionalities of OpenFlow Knowledge Repository described in 2.2.12.

ODIN 101017141

-28-

ROS interfaces for OpenFlow Core described in 2.2.7, 2.2.10 are developed using the ROS

Java library. To manage the interfaces and interact with the “actuator” components for the

interfaced Actions, OpenFlow uses the AKKA framework to implement the Actor model

described in 2.2.7.

The OpenFlow is designed to be distributable through docker [9] container images. The

OpenFlow initial prototype has been released as a docker image that allows all the partners in

the consortium to use and evaluate the latest development state.

Prior to the M18 release that coincides with the D4.1 submission date a preliminary release

was also provided to enable an early, preliminary White Goods integrated scenario that took

place in LMS.

The OpenFlow docker images have been uploaded in the project’s private docker image

repository that is hosted by LMS. ODIN project partners can request credentials and gain access

to OpenFlow docker images.

ODIN 101017141

-29-

3. CYBERSECURITY

This section describes the ODIN Cybersecurity module, in terms of its main features of threat

modelling, detection and response.

3.1. Introduction
When speaking of protecting an environment, we need to divide the process in different steps:

- Threat modelling: understand how the attack can be performed.

- Detection: identify how to identify if an attack is ongoing.

- Response: prepare the defensive actions that will allow the minimization of the damage

In complex interconnected systems with relative visibility, this can be a difficult process to

organize. A robotic environment in a factory is providing an increasing interconnected

functionality, and thus, a growing attack surface.

To organize the protection of these environments it is needed to adapt the steps to the needs.

The main focus of this task is to study reference frameworks on how a cyberattack is performed,

in order to adapt them to an environment as the one described in the ODIN project and to model

possible threats accordingly. In particular, the modelling and protection will be focused on the

scope of the ODIN Networked component.

Once the kind of threats and attacks to expect will be known, a specific way of searching for

the referred attacks will be proposed by exploring traces in the systems that indicate some kind

of offensive action.

The last step is to provide a way of responding to the detected threats, by signaling it, launching

defensive actions or starting a customized treatment request in the operation center.

This way, the impact of threats that may occur in the system can be minimized.

3.2. Features
The main ODIN proposal for the Cybersecurity solution is based on three main features that

provide an approach for the management of the environment:

- Threat modelling and attack surface definition,

- Detection,

- Response.

3.2.1. Threat modelling and attack surface definition

According to [10], attack surface Analysis is about mapping out which parts of a system need

to be reviewed and tested for security vulnerabilities. Attack Surface Analysis tries to

understand the risk areas in an application, to identify which parts of the application are open

to attack, to find ways of minimizing this, and to notice when and how the Attack Surface

changes but also what this means from a risk perspective.

According to [12], threat modelling is a structured approach of identifying and prioritizing

potential threats to a system and determining the value that potential mitigations would have

in reducing or neutralizing those threats.

Once the attack surface is identified, an adapted threat modelling can be performed.

For this aim, MaGMa [16] and MITRE ATT&CK [13] methodologies have been analyzed.

They are actually closely related one each other.

ODIN 101017141

-30-

MaGMa is a Use Case Framework, created collaboratively by several Dutch financial

institutions. The main element of the security management is the use case, which MaGMa

defines as “a security monitoring scenario that is aimed at the detection of manifestations of a

cyber threat”. The use cases are subdivided in three levels, from the top Business layer,

describing how it is connected to the organizational needs, Threat layer, describing how the

use case can be menaced and the low-level Implementation layer where the technical and

operational aspects of the architecture are described. The threats are also divided in three levels

of detail, from higher L1, L2 (both being part of the Threat/tactical layer) and the actual

monitoring rules covered in the L3 level, based on the MITRE ATT&CK Matrix for Enterprise.

This structure is the way of linking a top-level business view to a low-level technical asset or

operation.

MITRE ATT&CK is a framework that aims to document the common tactics and techniques

used against IT and OT environments. This framework divides an attack in different phases,

called tactics, that are performed in sequence, although not all may be necessarily used, in order

to complete a successful cyberattack. Each one of the steps can be performed with a catalogue

of adversarial techniques, offensively oriented actions against the platform.

These approaches will be followed for the attack modelling methodology definition. The

proposed attack model will include a set of techniques that can be used for a hypothetical attack

to the ODIN platform.

In section 3.3.1 the attack modelling methodology will be described, and in section 3.4.1, a

concrete attack surface and threat model for ODIN will be developed.

3.2.2. Detection

In cybersecurity, detection is the ability to search for traces and identify possible attacks. The

implementation of detection will be based on Security Information and Event Management

(SIEM) tools, with the following capabilities:

- Event ingestion:

o Collection of raw data from the network and systems.

- Event generation:

o Normalization,

o Aggregation,

o Correlation.

In section 3.3.3 the Cybersecurity solution architecture, that includes the SIEM component, is

presented, while section 3.4.3 provides further information of the SIEM implementation and

deployment.

3.2.3. Response

In cybersecurity, response is the ability to orchestrate the defensive actions when a possible

attack is identified. The proposed implementation of response actions will be based on Security

Orchestration, Automation and Response (SOAR) tools, with the following capabilities:

- Workflow,

- Automation,

- Incident response,

- Ticketing and communication.

ODIN 101017141

-31-

In section 3.3.3 the Cybersecurity solution architecture, that includes the SOAR component, is

presented. Further information of the SOAR implementation and deployment are described in

section 3.4.3.

3.3. Design
This section describes the cybersecurity system for ODIN, according to the features described

in section 3.2, and how it is integrated in the ODIN architecture. For that, first the attack

modelling methodology used for the project is identified and described. Then the ODIN use

cases architecture is presented, and the scope and concrete tools are defined which will be

deployed for cybersecurity. Finally, the validation process is described.

3.3.1. Attack modelling methodology

When defining and testing cybersecurity in an environment, the main actors are used:

- Red Team. Plays the role of the attacker. The goal would be to identify a sequence of

actions to gain access to the main goal. This sequence is called a Kill Chain [15] and

it’s composed of different techniques in all or some of the tactics described in the

MITRE ATT&CK model.

- Blue Team. Plays the role of the defender. Should be aware of the attack surface

provided by the system in order to protect it. Its goal is to identify all possible

techniques in each tactic to which it is exposed and protect them, so no Kill Chain can

be found by an attacker.

These roles represent the two positions in a cyberattack, attacker and defender, and reflect the

main difference in what success means for each one. While an attacker just needs one

successful path, namely Kill Chain, to achieve the goal, the defender needs to assure and protect

a wide range of possible steps that may be used to gain access to the target.

Therefore, the methodology approach for a defender is to be aware of where the attacker may

advance in the chain of actions that will lead to an intrusion.

- Identify all techniques that apply to the architecture.

- Describe how to exploit the adversarial technique.

- Identify how to detect an attack with that technique (Detection Technique).

- Implement detection techniques.

- Describe how to react on an attack (Protection Technique).

- Implement protection techniques.

3.3.2. ODIN network architecture

This section presents the network architecture for ODIN. The ISA 99 reference framework [14]

has been analyzed, that aims at including security in the design of industrial networks and

adapting it to the ODIN network architecture. Over this scenario, the scope of the cybersecurity

detection and response, and where the different elements are placed on this architecture will be

defined in section 3.3.3.

The following figure presents the existing state of the ODIN Network Architecture.

ODIN 101017141

-32-

Figure 19: ODIN Network Architecture based on IEC 62443 / ISA99 model

This proposed scenario presents a network architecture segmented in 5 levels with segregation

according to IEC 62443 [17] and ISA 99 to isolate different IT and OT networks.

• Level 0 – Field Network: The different Robots are located at this level.

• Level 1 – Control Network: The Robot Controllers are located here.

• Level 2 – Process Network: The ROS Controllers are place at this level.

• Level 3 – Operations: OpenFlow is located here at the existing state.

• Level 4 – IT Network: IT services are located at this network.

3.3.3. Cybersecurity Module Architecture

Over the ODIN network architecture defined in section 3.3.2, this section describes where to

locate the different components of the ODIN Cybersecurity module, and which is the scope of

the cybersecurity protection.

On the one hand, the main elements of the ODIN Cybersecurity system are:

ODIN 101017141

-33-

• SIEM for collection of raw data from the network and systems and event generation.

• SOAR for security response and orchestration.

On the other hand, according to the scope of task T4.2, the cybersecurity monitoring and

protection is focused on the scope of the ODIN Networked component targeting on the

modelling, detection and response features of the ODIN Cybersecurity module integrated with

the OpenFlow implementation.

The following figure shows the ODIN Network architecture with cybersecurity tools (SIEM

and SOAR) integrated.

Figure 20: ODIN Network Architecture with Cybersecurity tools integrated

In the figure above, ODIN Cybersecurity System is located at Level 4, in the IT Level. It

provides detection and protection services over the ODIN OpenFlow module, which was

initially identified at Level 3, Operations Level.

ODIN 101017141

-34-

3.3.4. Validation

The validation of the Cybersecurity system will be done through the following steps:

1. Test individual attacks that use attack techniques.

2. Identify complete Kill chains that leads to a use case compromise by linking different

adversarial techniques. Test sequence.

3. Detect individual attacks with detection techniques.

4. React using protection techniques.

3.4. Initial Prototype
This section presents the initial prototype for the ODIN Cybersecurity system. For this aim a

concrete attack scenario and threat modelling for the use case is defined. Then, the prototype

environment is described, and finally the Detection and response solutions are presented.

It is important to define here the assumptions of the prototype, in terms of defining what is out

of the scope of the project in terms of attack surface definition and threat modelling.

3.4.1. Prototype environment

This section describes the working environment that is being used for ODIN Cybersecurity

System prototype design and implementation. As mentioned before, the target of the security

services is the ODIN Networked component. Therefore, it is necessary to deploy this

component in the working environment to integrate it with Cybersecurity solution.

For the prototype environment, the emulation mode of OpenFlow will be used, that will provide

the digital twin of the networked component. Over this emulated scenario, the cybersecurity

system will be deployed and several cybersecurity exploits and tests, without affecting the real

deployment will be deployed.

Based on Figure 18 which describes the OpenFlow module deployment in a real scenario, the

emulated environment is described in Figure 21.

ODIN 101017141

-35-

Figure 21: ODIN Networked Component Emulation

The emulation of the ODIN Networked component provides the following elements:

• OpenFlow instance: provided as a docker image.

• ROS Core: a toolkit that interacts with OpenFlow.

• MongoDB: OpenFlow database.

This emulation is provided by the project through a containerized format and the details about

the implementation are the following:

• Flavour: ROS1.

• ROS Distro: Noetic.

• ROS Version: 1.15.14.

3.4.2. Attack scenario

The attack scenario will be defined through:

• The attack flow / steps.

• The attack surface.

• The attack model, with all the techniques and tactics.

The following figure presents the interactions flow that may occur over OpenFlow.

ODIN 101017141

-36-

Figure 22: ODIN Architecture interactions flow

OpenFlow is managed through a Web UI, and according to the figure above, this interface

could be accessed by internal (Level 4) and external users. Then, the planned operations will

be forwarded from the OpenFlow (Level 3) to the ROS Controller (Level 2), so that they are

forwarded again to the Robot Controller (Level 1) and finally to the Robot (Level 0).

Based on this interaction flow, the elements with which the OpenFlow interacts can be derived,

and its interfaces and the attack surface can be identified.

• OpenFlow networked component.

• Host and OS environment.

• Docker environment.

• Web App environment.

• ROS communication (ROS1 and ROS2).

A list of available servers/publishers and clients/subscribers has been already provided in the

GitHub repository and can be visualized in Figure 23.

ODIN 101017141

-37-

Figure 23: OpenFlow publishers and subscribers list

Once the attack surface for the security target is defined, the threat modelling will be defined, according to the methodology presented in section

3.3.1.

First, a Cyber Kill Chain for OpenFlow will be defined. A cyber kill chain for an automated robotics scenario like ODIN will take into account the

IT network (external network) and OT network (internal network) where the phases of the kill chain will be the following:

• Reconnaissance. Research, identification, and selection of targets.

• Weaponization. Before attacking the target, the threat actor need to perform an effective way to perform the attack. Weaponization is the

process where tools are built or used.

ODIN 101017141

-38-

• Cyber Intrusion.

• Privilege escalation.

Knowledge of the Cyber Kill Chain allows operators and security officers to apply specific

measures to this field aimed at protecting control systems at each stage of the chain, for

instance, SIEM systems.

Secondly, MaGMa and MITRE ATT&CK frameworks will be adapted for ODIN by selecting

the different applicable tactics. The MITRE Tactics are:

• Initial Access.

• Execution.

• Persistence.

• Evasion.

• Discovery.

• Lateral Movement.

• Collection.

• Command and Control.

• Inhibit Response Function.

• Impair Process Control.

• Impact.

In ODIN, from the Cybersecurity perspective, a threat scenario will be modelled for OpenFlow,

which is composed by the followed components:

• Web application Front End:

o Apache

o Tomcat Embedded

• ICS environment

• Docker environment

Therefore, the MITRE Tactics can be filtered and adapted to these environments, as shown in

the figure below:

ODIN 101017141

-39-

Figure 24: MITRE Matrix filtered for ICS domain

As we can see in the figure above, this is the MITRE Matrix filtered for an ICS environment, and over the whole tactics the most representative

ones for the ODIN Networked Components have been highlighted. The color code is based on the score provided to each tactic, depending on its

criticality, and it varies from the lowest score of value 1 (green) to the highest score value of 3 (red).

ODIN 101017141

-40-

Additionally, to this work of modelling with MITRE, an adaptation of the MaGMa Use Case Framework to analyze the potential threats over an

industrial network has been analyzed. This analysis’ results are included in ANNEX A.

ODIN 101017141

-41-

3.4.3. Cybersecurity module implementation

This section describes how the cybersecurity architecture presented in section 3.3.3 is

implemented and integrated in the prototype environment.

The following figure presents the main elements of the ODIN Cybersecurity system, that are a

Security Information and Event Management (SIEM) system, a Security Orchestration,

Automation and Response (SOAR) system and a final step of Incident Research and Resolution.

Figure 25: ODIN Cybersecurity System general implementation

SIEM:

Security information and event management (SIEM) technology supports threat detection,

compliance and security incident management through the collection and analysis (both near

real time and historical) of security events, as well as a wide variety of other event and

contextual data sources. The core capabilities are a broad scope of log event collection and

management and the ability to analyze log events and other data across disparate sources but

also operational capabilities (such as incident management, dashboards and reporting).

Combining security information management (SIM) and security event management (SEM),

security information and event management (SIEM) offers real-time monitoring and analysis

of events as well as tracking and logging of security data for compliance or auditing purposes.

SIEM is a security solution that helps organizations recognize potential security threats and

vulnerabilities before they have a chance to disrupt business operations. It surfaces user

behavior anomalies and uses artificial intelligence to automate many of the manual processes

associated with threat detection and incident response. This has become a staple in modern-day

Security Operation Centres (SOCs) for security and compliance management use cases.

As part of a SIEM component, a SIEM agent helps to normalize and provide different actions.

In ODIN, a cybersecurity agent will perform functions of an endpoint detection and response

system, monitoring and collecting activity from end points that could indicate a threat. Security

agent runs at a host-level, combining anomaly and signature-based technologies to detect

intrusions or software misuse.

The features that SIEM agent proposed can provide among others are:

• Log collector

• Command execution

• File integrity monitoring

• Malware detection

• Container security monitoring

ODIN 101017141

-42-

SOAR:

Security Orchestration Automation and Response (SOAR) is a stack of compatible software

programs that enables an organization to collect data about security threats and respond to

security events without human assistance. The goal of using a SOAR platform is to improve

the efficiency of physical and digital security operations.

Orchestration

Connects and integrates disparate internal and external tools via built-in or custom integrations

and application programming interfaces (APIs). Connected systems may include vulnerability

scanners, endpoint protection products, end-user behavior analytics, firewalls, intrusion

detection and Intrusion Prevention Systems (IDS/IPS), security information and event

management (SIEM) platforms, as well as external threat intelligence feeds.

With all the data gathered comes a better chance at detecting threats, along with more thorough

context and improved collaboration. However, the trade-off is more alerts and more data to

ingest and analyze. Security automation takes action where security orchestration consolidates

data to initiate response functions.

Automation

Fed by the data and alerts collected from security orchestration, it ingests and analyses data and

creates repeated, automated processes to replace manual processes. Tasks previously performed

by analysts, such as vulnerability scanning, log analysis, ticket checking and auditing

capabilities, can be standardized and automatically executed by SOAR platforms. Using

artificial intelligence (AI) and machine learning to decipher and adapt insights from analysts,

SOAR automation can make recommendations and automate future responses. Alternately,

automation can elevate threats if human intervention is needed.

In case that a malicious URL is found in an employee email and identified during a scan, a

playbook can be instituted that blocks the email, alerts the employee of the potential phishing

attempt and blocklists the IP address of the sender. SOAR tools can also trigger follow-up

investigative actions by security teams if necessary. In terms of the phishing example, follow-

up actions could include searching other employee inboxes for similar emails and blocking

them and their IP addresses, if found.

Response

Offers a single view for analysts into the planning, managing, monitoring and reporting of

actions carried out once a threat is detected. It also includes post-incident response activities,

such as case management, reporting and threat intelligence sharing.

Incident research and Resolution:

This step will elevate case and issue management and will manage the notification

communications. It will be performed through Security Operation Centres (SOC). SOC

leverage a number of tools to detect, thwart and deal with security attacks. One of the key

challenges of SOC is to quickly integrate security tools and operational activities.

The following figure presents a more detailed overview of the elements of the ODIN

Cybersecurity system.

ODIN 101017141

-43-

Figure 26: ODIN Cybersecurity System detailed implementation

On the one hand, there is a SIEM Agent that detect and collects the security events. In the case

of the figure above the events are gathered from the logs of a monitored end-point but some

other agents may also provide security events gathered sniffing the network traffic, for instance.

Then, the SIEM Agent send the events to the SIEM server, where this information is collected,

normalized and correlated, so that security alerts are raised based on their criticality.

These alerts are then sent to the SOAR system, where they are further investigated to allow the

appropriate case management and reactive response.

Regarding the specific description of the implementation, hereafter it is described the

components of the Cybersecurity system, with the aim of a continuous incident detection and

response with a SOC approach.

• Incident detection:

o SIEM: Wazuh and Wazuh Agent / syslog / rsyslog.

o Elasticserahc.

o Kibana.

• Incident Response

o SOAR:

▪ Shuffle.

▪ The Hive.

3.4.4. Initial integration and testing

The following figure describes the sequence to be followed for the integration between the

Cybersecurity module and the OpenFlow.

ODIN 101017141

-44-

Figure 27: ODIN Cybersecurity System detailed implementation

Some attack scenario examples are summarized in the following list:

• Brute force Authentication against OpenFlow web interface.

• Exploit vulnerabilities in ROS and launch remote code executions from a privileged

ROS endpoint compromising completely the computational graph.

• Robot Vulnerability Database for ROS1 implementation and according to ROS Noetic

version.

In addition, focus is given on the presentation of the full chain of detection and response by the

ODIN Cybersecurity System for the Brute Force Attack.

1. SIEM: The event is detected Wazuh.

Figure 28: Event detected in the SIEM

ODIN 101017141

-45-

2. SOAR - Shuffle: There is a workflow that ingests events from the SIEM and performs

an automated case management in Shuffle. The workflow steps are the following:

2.1.SIEM phase: Webhook connected to the SIEM that receives the events and

transfers them to the Node step.

2.2.Node: It will get the data from the SIEM and will parse the information for the

Tool step (data driven).

2.3.Tool: Tool for data driven process that will prepare the data in JSON format.

2.4.Create alert (The Hive): Here there is a condition that states that if the alert

criticality score is higher that a predefined threshold, the alert will be created in

The Hive.

Figure 29: Automated case management in Shuffle

ODIN 101017141

-46-

3. SOAR - The Hive: The alert is forwarded to The Hive automatically:

Figure 30: Alert management in The Hive

ODIN 101017141

-47-

4. SOAR – The Hive: The Hive is able to create a case based on the alert, with the aim of further research and respond to the incident

through other SOC capabilities.

Figure 31: Alert scalation to case in The Hive

ODIN 101017141

-48-

4. CONCLUSIONS

The main aim of the deliverable D4.1 is the presentation of the initial prototype of:

➢ OpenFlow module, which is responsible to integrate, orchestrate, manage and

coordinate production resources to execute manufacturing schedules.

➢ Cyber Security module, which uses models and use cases, monitors and provides

detection and response capabilities on the deployed Network Component.

The work performed at this stage of the project has been focused on demonstrating the

functionality of the prototypes. Then in M36, the final version will be provided, including

further work for extending the features of the prototypes, continuing the integration with use

cases and completing the validation phase.

The OpenFlow initial prototype has been presented in this document. It is a functional, initial

prototype that has also demonstrated integrated functionality in the scope of the small-scale

pilot case developments of T2.6. A positive outcome was the first initial prototype of most

features has been implemented until M18 and this not only facilitated the integrated execution

and testing of the small-scale Pilot Cases but also provided valuable information and feedback

that will help the future steps of the development of the OpenFlow modules.

The next steps of the OpenFlow development will closely follow and support the work done in

other work packages and modules aiming to release more internal versions, in order to support

the Pilot Case development and integration activities. At the same time efforts will be focused

to extend and implement all OpenFlow required features and particularly the higher-level

features such as the monitoring of the other modules status and the re-scheduling of the

production execution.

In addition, the Cybersecurity initial prototype has been presented in this document. It has

demonstrated its three main features of threat modelling, detection and response over an

emulated scenario of the ODIN Networked component and through an example of the Brute

Force attack technique.

The next steps will be focused on completing the threat model adapted for the ODIN scope and

including all the relevant tactics. On the other hand, the integration of the response actions with

advanced SOC management functionalities will be investigated. Finally, the validation phase

will be performed as well.

Overall, the initial prototype of the Network Component has been presented, including a

functional initial prototype of the OpenFlow and Cybersecurity modules.

WP4 will continue working on the development of the ODIN Network Component in close

collaboration with the other WPs and at the same time WP4 will work on the deployment and

testing at pre-industrial scale that takes place in T4.3. The plan is to have a preliminary

deployment and testing completed by M24, that will be documented in D4.2.

ODIN 101017141

-49-

5. GLOSSARY

AI Artificial Intelligence

API Application Programming Interface
AR Augmented Reality
CRUD Create, Reade, Update, Delete

C&C Command and Control

C2 Command and Control
DB Database
DDD Domain Driven Design
ERP Enterprise Resource Planning

IDS Intrusion Detection System

IEC International Electrotechnical Commission

IP Internet Protocol

IPS Intrusion Prevention System

ISA Industry Standard Architecture
IT Information Technology
HMI Human Machine Interface
HRC Human Robot Collaboration
KR Knowledge Repository
MES Manufacturing Execution Systems

OSINT Open-Source Intelligence

OT Operational Technology

PLM Product Lifecycle Management

ROS Robot Operating System

SCADA Supervisory Control and Data Acquisition

SOA Service Oriented Architecture

SOAR Security Orchestration, Automation and Response

SIEM Security Information and Event Management

SOC Security Operation Centre

UI User Interface

URL Uniform Resource Locator

ODIN 101017141

-50-

6. REFERENCES
1. Chryssolouris, G., Manufacturing Systems: Theory and Practice, 2nd Edition, Springer-

Verlag, New York, New York, (2006)

2. G. Michalos, S. Makris, N. Papakostas, D. Mourtzis, G. Chryssolouris,"Automotive

assembly technologies review: challenges and outlook for a flexible and adaptive

approach", CIRP Journal of Manufacturing Science and Technology, Volume 2, Issue 2,

pp. 81-91 (2010)

3. N. Kousi, S. Koukas, G. Michalos, S. Makris:"Scheduling of smart intra – factory material

supply operations using mobile robots", International Journal of Production Research,

Volume 57, Issue 3, pg. 801-814, (2018)

4. N. Kousi, S. Koukas, G. Michalos, S. Makris, G. Chryssolouris, "Service oriented

architecture for dynamic scheduling of mobile robots for material supply", CIRPe2016 ,

Procedia CIRP, 5th CIRP Global Web Conference-Research and Innovation for Future

Production Volume 55, pp. 18-22 (2016)

5. S. Papanastasiou, N. Kousi, P. Karagiannis, C. Gkournelos, A. Papavasileiou, K. Dimoulas,

K. Baris, S. Koukas, G. Michalos, S. Makris, "Towards seamless human robot

collaboration: integrating multimodal interaction", The International Journal of Advanced

Manufacturing Technology, Volume 105, pg. 3881-3897, (2019)

6. G. Michalos, N. Kousi, P. Karagiannis, C. Gkournelos, K. Dimoulas, S. Koukas, P. Mparis,

A. Papavasiliou, S. Makris,"Seamless human robot collaborative assembly – An automotive

case study", Mechatronics, Volume 55, pg 194-211, (2018)

7. S. Makris, P. Karagiannis, S. Koukas, A. S. Matthaiakis, "Augmented reality system for

operator support in human–robot collaborative assembly", CIRP Annals - Manufacturing

Technology, Volume 65, Issue 1, pp. 61-64 , (2016)

8. S. Koukas, N. Kousi, S. Aivaliotis, G. Michalos, R. Bröchler, S. Makris, "ODIN architecture

enabling reconfigurable human – robot based production lines", Procedia CIRP, Volume

107, pg 1403-1408, (2022)

9. Official Docker site, Docker, https://www.docker.com/ accessed online 2021-09

10. OWASP, attack surface analysis:

https://cheatsheetseries.owasp.org/cheatsheets/Attack_Surface_Analysis_Cheat_Sheet.htm

l

11. "Domain Driven Design, Definitions and Pattern Summaries", E. Evans, (2015).

https://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf

accessed online 2022-05.

12. OWASP, threat modelling:

https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html

13. MITRE ATT&CK: https://attack.mitre.org/

14. ISA99: Security for Industrial Automation and Control Systems:

http://www.enerxis.com/en/industry-standards/isa99.php

15. Cyber Kill Chains applied to ICS: https://www.incibe-cert.es/en/blog/cyber-kill-chain-

applied-ics.

16. MaGMa: https://www.betaalvereniging.nl/en/safety/magma/

17. International Electrotechnical Commission (IEC), Industrial communication networks -

network and system security, Geneva, 2018.

http://www.sciencedirect.com/science/article/pii/S2212827116309489
https://link.springer.com/article/10.1007/s00170-019-03790-3
https://www.sciencedirect.com/science/article/pii/S0957415818301326
http://www.sciencedirect.com/science/article/pii/S0007850616300385
https://www.sciencedirect.com/science/article/pii/S2212827122004498
https://www.sciencedirect.com/science/article/pii/S2212827122004498
https://www.docker.com/
https://cheatsheetseries.owasp.org/cheatsheets/Attack_Surface_Analysis_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Attack_Surface_Analysis_Cheat_Sheet.html
https://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html
https://attack.mitre.org/
http://www.enerxis.com/en/industry-standards/isa99.php
https://www.incibe-cert.es/en/blog/cyber-kill-chain-applied-ics
https://www.incibe-cert.es/en/blog/cyber-kill-chain-applied-ics
https://www.betaalvereniging.nl/en/safety/magma/

ODIN 101017141

-51-

7. ANNEX A: MAGMA ADAPTATION TO INDUSTRIAL NETWORKS

This report proposes the adaptation of the MaGMa Use Case Framework to analyze the

potential threats over an industrial network.

The analyzed scenario is based on a simple assembly line operated by a ROS-powered robot.

The following reference documentation was used to build the scenario:

• NIST Special Publication 800-82, Guide to Industrial Control Systems (ICS) Security

[1].

• ISA/IEC 62443 family of standards [2].

• Red Team Robot Security White paper from Alias Robotics [3].

• MaGMa Use Case Framework [4].

In addition to the present document, the obtained MaGMa analysis performed using the excel

document of Magma UCF tool [7] adjusted on ODIN ROS based system.

7.1. Steps of the Analysis
The execution of the MaGMa Use Case Framework (hereafter, called MaGMa) requires the

definition of a process of analysis:

1. Define the scope: Describe the scenario that is going to be analyzed.

2. Identify relevant assets and potential entry points: Define which elements in the

scope are going to be inside the analysis, and which potential entries can be used to

compromise them.

3. Analyze Potential Drivers and References in MaGMa: Specify which detection

technologies are implemented in the scenario, which are the potential threat actors, or

any compliance driver that has to be fulfilled.

4. Generation of L1 use cases: Generation of L1 use cases using the extended cyber kill

chain defined in the MaGMa tool.

5. Generation of L2 use cases: Each L1 use case is expanded using the list provided in

the MaGMa tool to generate the corresponding L2 use cases.

6. Generation of L3 use cases (ATT&CK Matrix): Finally, L3 use cases for each L2 use

case are generated using the ATT&CK Matrix as a reference.

The next figure provides a flow diagram of the steps that should be followed to perform an

analysis of a given scenario using the MaGMa Use Case Framework.

https://www.betaalvereniging.nl/wp-content/uploads/Magma-UCF-Tool.xlsx

ODIN 101017141

-52-

Figure 32: Steps of MaGMA use case framework for a given scenario

In the following sections, each one of these steps is further explained, and applied to a use case

that serves as an example.

IMPORTANT NOTE: It is important to notice that the formulas provided in the MaGMa tool

do not work properly, especially when rows are filtered (e.g., alphabetically). To correct them,

we have to go to the “L2 UC” page on the document. For every formula defined between

column “H” and column “L”, we have to delete every 'L2 UC'! that appears in the formulas.

An example of this process is presented in Figure 33. An example of how the formula should

look like is shown in Figure 34.

ODIN 101017141

-53-

Figure 33: Relative reference in the formulas of the MaGMA tool

Relative reference in the formulas of the MaGMa tool must be deleted in order for the tool to

work properly. This has to be done for every formula from column “H” to column “L”.

Figure 34: Modified formulas in the MaGMA tool

7.2. Step 1 - Definition of the Scope
The analyzed scenario is a simplified version of an assembly line operated by a ROS-powered

robot, shown in Figure 35 [3]. The network generalizes the main elements that can usually be

found in a similar environment, together with the subnetworks recommended by the NIST SP

800-82 special publication [1].

ODIN 101017141

-54-

Figure 35: Use case architecture diagram

This synthetic scenario presents a network segmented in 5 levels with segregation implemented

following recommendations in NIST SP 800-82 and IEC 62443 family of standards. There are

6 identical robots from Universal Robots [6] presenting a variety of networking setups and

security measures, each connected to their controller. ROS and ROS-Industrial package live in

Levels 2, 3 and 4.

The ruleset that controls the communication between boundaries is defined as follows:

• The first firewall F1 blocks arbitrary packages from the Internet to enter the IT Network

(Level 4). Only selected traffic should be allowed from proceeding to the enterprise

network.

ODIN 101017141

-55-

• The second firewall, F2, blocks packages in the IT Network (Level 4) from going to the

OT networks (Level 2 and below).

• The third firewall F3 only allows permitted traffic from the DMZ (Level 3) to the OT

Networks (Level 2 and below). Connections between Level 3 and Level 2 are permitted

only when they are initiated by the endpoint in Level 2.

It is important to remark that both external and insider attacks must be considered to make the

analysis more comprehensive.

7.3. Step 2 - Identification of the relevant assets and Entry Points
In this step, each one of the assets that will be part of the analysis is defined and characterized.

Moreover, for each asset, the potential entry points will be also defined. Table 8 provides a

summary of the key elements in the network.

7.3.1. Central Control Station

It is a Linux-based central control station which command other ROS-enabled endpoints (such

as the ROS drivers enabled on each sub-control station):

• Ubuntu Bionic (18.04 LTS).

• ROS Noetic Ninjemys 1.15.14.

• ROS-Industrial packages, communicating with the robot controller via a local area

network.

• Security measures applied follow the recommendations of Canonical’s report

(Canonical, 2020) on how to secure ROS robotics platforms in Ubuntu Bionic 18.04

Linux distribution. No wireless communications are assumed to be enabled.

• The central control station is assumed unique in the networking setup and wherein the

ROS Master process will be running (in other words, all other ROS-enabled machines

will be acting as slaves).

7.3.2. Certification Authority

A certificate authority or certification authority (referred as CA in both cases) is an entity that

issues digital certificates. In the context of the use case, the CA is represented by either an

individual machine or a process running in the Central Control Station that issues digital

certificates which certify the ownership of a public key by the named subject (another entity in

the use case) of the certificate. This allows others (relying parties) to rely upon signatures or on

assertions made about the private key that corresponds to the certified public key. The CA acts

as a trusted third party—trusted both by the subject (owner) of the certificate and by the party

relying upon the certificate. The format of these certificates is specified by standards (generally

the X.509). The CA could be either continuously operating and serving or be switched off by

default and get enabled only when new certificates need to be issued.

ODIN 101017141

-56-

7.3.3. Historian Database

A historian is a software service that accumulates time-stamped data, events, and alarms in a

database which can be queried or used to populate graphic trends in the HMI.

7.3.4. Control Station

It is a Linux-based control station which operates the robot controller (and coherently, the robot

mechanics):

• Ubuntu Bionic (18.04 LTS).

• ROS Noetic Ninjemys 1.15.14.

• ROS Industrial drivers for Universal Robots, communicating with the robot controller

via a local area network.

• No wireless connectivity is assumed.

• Security measures applied follow the recommendations of Canonical’s report [5] on

how to secure ROS robotics platforms in Ubuntu Bionic 18.04 Linux distribution. No

wireless communications are assumed to be enabled.

7.3.5. Controller

The robot controller is accessible locally via physical means (e.g., USB ports or Ethernet ports)

or its local network connections.

The controller includes by default no security measures enabled. Since the initial use case was

based on the preliminary white goods scenario, each controller is assumed to run firmware

version 3.13.0 from Universal Robots.

ODIN 101017141

-57-

Table 8: Summary of the assets in the network of the use case and their properties

ASSET HARDWARE SW ENTRY POINTS SECURITY MEASURES

Central

Control

Station

- Industrial-grade PC

- 4 cores CPU

- 4096 MB RAM

- Ubuntu Bionic (18.04 LTS)

- ROS Noetic Ninjemys (1.15.14)

- ur_modern_driver

- Universal_Robots_ROS_Driver

- Physical access (local area network

interfaces, storage devices, etc.)

- Local area network

Beyond the defaults, no

particular security

measures are applied into

the control stations.

Control

Station

- Industrial-grade PC

- 4 cores CPU

- 4096 MB RAM

- Ubuntu Bionic (18.04 LTS)

- ROS Noetic Ninjemys (1.15.14)

- ur_modern_driver

- Universal_Robots_ROS_Driver

- Physical access (local area network

interfaces, storage devices, etc.)

- Local area network

Beyond the defaults, no

particular security

measures are applied into

the control stations.

Controller
Universal Robots

controller CB3.1
 -N/A

- Teach pendant

- Ethernet port

- USB port (in the teach pendant)

- Local area network

Beyond the defaults, no

particular security

measures are applied into

the control stations.

ODIN 101017141

-58-

7.4. step 3 - Analyse Potential Drivers and References in MaGMa
Before start building the use cases, MaGMa requires to fulfil the Drivers and References in the

tool:

• Business Drivers.

• Compliance Drivers.

• Threat Actors.

• Detection Technologies.

• Log Sources.

• Scope.

It is worth noticing that business drivers, as they are defined by MaGMa, are not always

relevant for the analysis. This is happening because they give a high-level view and most of

the time the analysis is focused on low-level systems, and not on a whole organization.

For those cases, it is proposed to use the primary and secondary properties of security instead:

• Confidentiality.

• Integrity.

• Availability.

• Accountability.

• Authenticity.

• Non-Repudiation.

This method complements the information generated by MaGMa for each use case, in order to

see which dimension is the most affected at the end of the analysis.

7.4.1. Potential Drivers and References in the Ros-based Scenario

The default settings in the MaGMa tool for all business drivers, detection technologies, log

sources, and scope are being used. Nevertheless, new compliance drivers and more precisely,

new external regulators have been defined as follows:

• ISA/IEC 62443-4-1.

• NIST Special Publication 800-82.

• ISO 27001.

• ISO 27005.

Additionally, existing threat actors have been modified assuming that:

• There are no know open conflicts with any third country.

• No terrorist organization is interested in our production process.

• Hackavists, Cyber Vandals, and Script Kiddies do not target organizations whose main

activity is focused on automated manufacturing. This means that our scenario is out of

scope for them.

• There is no social engineering implied.

This means that the actors that which might target the ODIN network are:

• Professional criminals.

• Internal actors.

• Private organizations.

ODIN 101017141

-59-

• Multiple actors.

When more than two actors apply to any given use case, “multiple actors” will be used. A new

actor “None” has been defined to indicate that the corresponding use case does not apply to the

scenario that is being analyzed.

Finally, business drivers, and external policies where not used in this analysis.

IMPORTANT NOTE: These data are filled in the “Drivers” and “References” pages of the

MaGMa Tool. In these pages, more rows can be added freely.

7.5. Step 4 – Generation of the L1 Use Cases
In this step, the initial threat categories proposed in the L1 use case level in MaGMa, to detect

possible missing categories are reviewed. We can move to the next step in case that no missing

threat category is detected. An overview of the L1 use cases is presented in Figure 36.

Figure 36: Threat categories proposed in MaGMA to serve as an overview of the use

cases

ODIN 101017141

-60-

These threats categories proposed by MaGMa aim to serve as a classification mechanism at

high level for all the use cases. This classification gives an overview of the current status of the

existing use cases. For this reason, the MaGMa version of the cyber kill chain is used in this

report.

It is worth noticing that there exist many modifications of the cyber kill chain model originally

proposed by Lockheed Martin Corporation. These new proposals modify the original model,

adapting it to meet the features of each particular scenario. An example of this can be found in

the white paper published by Alias Robotics, where they adapted the initial model to reflect the

characteristics of a robotic environment [3].

They main difference with the cyber kill chain used in MaGMa is that the one proposed by

Alias Robotics consider both external but also insider attacker and adapts the steps

consequently. Nevertheless, this feature is easy to be integrated in MaGMa during the analysis.

7.5.1. L1 Use Cases for the ROS-based Scenario

In the scenario presented in this document, no additional threat categories were needed, so the

analysis was performed using the ones proposed by MaGMa by default.

IMPORTANT NOTE: In this step, the only cells that can be modified are those that belong

to columns “E” and “F”. The remaining cells in the L1 UC page are automatically filled. New

rows should be added below the existing row 16 in case that more threat categories are needed.

The rest of the document should be manually updated to reflect this change.

7.6. Step 5 – Generation of the L2 Use Cases
In this step, each individual L2 use case should be checked to find whether it applies to the

scenario that is being analyzed or not. In addition, information related to actors, business

drivers, internal policies, and external regulators could be added if it is required.

MaGMa already provides a comprehensive list of 62 L2 use cases, associated to the initial L1

use cases, as is shown in Figure 37.

ODIN 101017141

-61-

Figure 37: Examples of the L2 use cases provided by MaGMa

ODIN 101017141

-62-

7.7. L2 Use Cases for the ROS-based Scenario
The generation of the corresponding L2 use cases for the ROS-based scenario consists of

analyzing each one of the 62 L2 UC proposed by MaGMa. For each occasion, it needs to be

decided whether it applies to the investigated ROS-based scenario or not.

It is possible to detect a potential L2 UC that is not in the proposed list by MaGMa. In that

case, new row at the bottom to integrate those in the analysis can be added.

In addition, when a L2 UC applies, it is required to fulfil its business drivers, internal policies,

and internal regulators when necessary. This means that not every L2 UC might have a business

driver associated, nor an internal policy, nor an internal regulator associated.

Figure 38 shows the extracted L2 UC generated for the ROS-based scenario.

ODIN 101017141

-63-

Figure 38: Example of the selected L2 use cases for the ROS-based scenario

ODIN 101017141

-64-

IMPORTANT NOTE: In this step, the only cells that can be modified are those that belong

to columns “F”, “M”, “N”, “O”, and “P”. The remaining cells in the L2 UC page are

automatically filled. If more L2 Use Cases are needed, they should be added after row 63. If

more Internal Policies, or external regulator are needed, they should be added after column

“P”. The rest of the document should be manually updated to reflect this change.

7.8. Step 6 – Generation of the L3 Use Cases
This is the most critical step in all the process, so it is important to be methodical to consider

all options. This is because, at this step the real use cases are developed and related to the initial

system that is analyzed. In this step, for each L2 UC it is required to analyze:

• What event or events should be detected in order to fulfil the L2 UC.

• Which techniques of the ATT&CK matrix can be used by the attackers to cause such

events.

In addition, the log source that is going to be used to detect that L3 UC, the detection technology

and the scope should be added for each L3 UC which is completed.

Regarding to the scope, it is important to notice that this field can be used to indicate which

asset of the system is affected by this L3 UC. Moreover, more than one “Scope” column can

be used to even detail more the scope of each L3 UC.

Finally, for each L3 UC, it is required to specify the value of:

• Effectiveness percentage: This metrics indicates how effective the assigned detection

mechanism is to detect the corresponding event. For example, a proxy inspecting traffic

is much less effective if it is not able to inspect HTTPS traffic.

• Implementation percentage: This metric indicates how well a detection mechanism

has been implemented. For example, the implementation level of an IDS is much lower

if the ruleset is incomplete or has not been tuned.

• Coverage percentage: This metrics indicates the level in which this detection

mechanism covers the use case. For example, a use case focused on firewall events has

less coverage if not all traffic is routed through the connected firewall.

IMPORTANT NOTE: There exist multiple ATT&CK matrices provided by MITRE,

categorized in three main groups: 1. Enterprise, 2. Mobile, and 3. ICS. It is worth pointing out

that the enterprise matrix was used in this report.

7.8.1. L3 Use Cases for the ROS-based Scenario

To generate the L3 UC for the ROS based scenario, the potential techniques and event to each

L2 UC detected were associated. Initially, all the possible L3 UC associated to each L2 UC

should be considered. Nevertheless, the technical documentation or standards to support our

statements, together with the example provided in MaGMa can be used.

The three associated L3 UC for the L2 UC “Account breached.” are presented in Figure 39.

Although MaGMa provides most of the L2 UC in a comprehensive manner, L3 use cases have

to be extracted by the analyst according to the scenario being analyzed.

An initial approach to extract L3 UCs is to find related key terms in the ATT&CK matrix. This

can serve as a good starting point to find both the L3 US and the technique associated to them.

ODIN 101017141

-65-

Figure 39: Example of the generated L3 use case for the ROS-based scenario

ODIN 101017141

-66-

This process was followed to extract all the L3 UCs for the ROS-based scenario.

IMPORTANT NOTE: The exact characteristics of the system under analysis are considered

during this step. This means that any configuration, communication protocol, firewall rules,

etc. have to be considered here when building the L3 UCs.

IMPORTANT NOTE: It is worth noticing that the value of the effectiveness, implementation

and coverage metrics has to be set manually for each L3 UC. This means that it depends hugely

on the system under analysis. It is recommended that the row “Comments” on the L3 UC page

is used to specify the reason behind each value of each metric.

IMPORTANT NOTE: In this step, the only cells that can be modified are those that belong

the columns from “F” to “K”, and from “N” to “Q”. The remaining cells in the L3 UC page are

automatically filled. If more L3 Use Cases are needed, they should be added after row 170. The

rest of the document should be manually updated to reflect this change.

7.9. Interpretation of the Metrics
The MaGMa Use Case Framework provides two metrics that help to improve our use cases:

• Weight: This metric is a calculated overall score of the effectiveness, implementation,

and coverage for each use case. A low value of the weight indicates that one of the three

metrics (effectiveness, implementation, or coverage) has a low value that should be

improved. High values of this metric are preferred, indicating that all three metrics have

a high value.

• Potential: This metric is a calculated value that indicates how much improvement can

be gained by investing in coverage and implementation. Thus, use cases that have a

high effectiveness, but low coverage and implementation are assigned with a high

potential value. Low values of this metric are preferred, because they indicate that there

is no possible enhancement that can be done to the implementation and the coverage.

To interpret these metrics, MaGMa uses a diverging color pallet from red (low values) to green

(high values). Next figure shows the colors used by MaGMa.

Figure 40: Colour scale used in MaGMa

The color scale used in MaGMa to represent the result of each metric is presented in Figure 40.

Red color represent low values of the metric, while green represent high values.

Although this scale seems useful, it fails to help interpreting their value because red color

values (low values) do not always imply a negative interpretation. This can be easily seen when

every metric has it optimal value. Figure 41 shows an example of this, where the effectiveness,

implementation, coverage, and weight are highlighted in green (indicating a high value, and

implicitly, a good value). Meanwhile, the potential is highlighted in red (indicating a low value,

and implicitly, a non-desirable value). When in reality, a value of 0 % for the potential is the

optimal. Even though the Potential metric is in red, its value corresponds with the most

appropriated value this metric can have.

ODIN 101017141

-67-

For this reason, it is critical to understand that the color scale for the potential is inverted and

low values are desirable.

Figure 41: Example of an optimal deployed use case

In summary, high values for every metric are targeted, except for the potential, where low

values are preferred. An example of generated data can be presented in the following figure.

Figure 42: Generated dataset of the metrics defined in MaGMa

The values shown in row 22 in Figure 42 are relatively balanced. Nevertheless, it is observed

that the potential is 31 %, indicating that the implementation or the coverage can be enhanced.

More precisely, the potential is indicating that the implementation should be improved as the

implementation is 68 % (lower than the coverage). The weight has a low value, indicating that

the effectiveness, the implementation, or the coverage should be improved. In this case, despite

the fact that the implementation should be enhanced, it is supposed that the weight indicates

the improve of the effectiveness of this detection mechanism.

It is worth noticing that row 23 in Figure 42 has the same weight as row 22 (43 %). However,

based on the values, it can be concluded that the problematic value here is the implementation

of the detection mechanism.

ODIN 101017141

-68-

Finally, analyzing the values in row 24 of the above figure, the low value of the weight

highlights the need to improve mainly the effectiveness, because the potential has a low value,

indicating that neither the implementation, nor the coverage need improvement.

7.10. References
1. K. Stouffer, V. Pillitteri , S. Lightman , M. Abrams and A. Hahn , Guide to Industrial

Control Systems (ICS) Security, U.S. Department of Commerce, 2015.

2. International Electrotechnical Commission (IEC), Industrial communication networks

- network and system security, Geneva, 2018.

3. V. Mayoral Vilches, I. Apellaniz Aparicio, U. Ayucar Carbajo and E. Gil Uriarte ,

White Paper - Red Team: Robot Cybersecurity for Industrial ROS Applications, Alias

Robotics.

4. R. van Os, F. Ladan, T. van Casteren, R. Toornstra, R. Metsemakers, L. Nieuwenhuize

and H. Grotenhuis, MaGMa Use Case Framework, FI-ISAC NL, 2017.

5. Canonical, “Securing ROS robotics platforms,” March 2020. [Online]. Available:

https://ubuntu.com/engage/securing-ros-on-robotics-platforms-whitepaper. [Accessed

10 June 2022].

6. Universal Robots, https://www.universal-robots.com/

7. MaGMa UCF tool excel file, Magma UCF tool.

https://www.universal-robots.com/
https://www.betaalvereniging.nl/wp-content/uploads/Magma-UCF-Tool.xlsx

