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1 Introduction  
The main aim of this deliverable is to report the metrics for validating the internal use case demonstrations. 
The metrics is used to characterize the performance of the systems and subsystems developed internally in 
WP3 on quantitative grounds and to identify the weakest points and potentially critical KPIs for the 
manufacturing solutions. Using the results of this evaluation analysis, we will provide guidelines for the 
improvement of the potential industrial systems and guide a cross-fertilization process leading to integrated 
solutions. 
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2 About Key Performance Indicators 
 
Key Performance Indicators (KPIs) are the critical key indicators of progress toward an intended result. 
KPIs provides a focus for strategic and operational improvement, create an analytical basis for decision 
making and help focus attention on what matters most. As Peter Drucker famously said, “What gets 
measured gets done.” (kpi.org) The intended result can be expressed in the form of a goal. When defining 
the goals, the SMART -model can be used to help creating good, articulated goals: 
 

• Specific: Define what you want to achieve 
• Measurable: What indicates that you have reach your goal? 
• Achievable: Is the set goal attainable? 
• Relevant: Is the goal relevant for you? Does it align with where you want to be? 
• Time-bound: When will we have achieved the set goal? 

 
Good articulated goals can be characterized as being a single statement, SMART, and outcome based. An 
example of a SMART goal could be: 

 
"We will have a remote programming environment in use by end of June 2022" 
 

• Specific: the programming environment is separated from physical assets  
• Measurable: we can determine that the environment is live and functioning 
• Achievable: even though the goal is ambitious, we already have a good portion of the environment 

in place and only the final touches are needed 
• Relevant: Remote working is emphasized in the world these days, as the pandemic times 

demonstrated that remote working can be efficient and realistic. It can be beneficial in future, 
without pandemic restrictions 

• Time-bound: The milestone for the release is set to June 2022 

 
Earlier we defined the KPIs as key indicators of performance towards an intended result or a goal, so it is 
important to set the KPIs to measure the things that contribute to the realization of the goal. It is also 
worthwhile to think, whether the intended result can be measured directly, or is it something that can be 
captured with several measurements. Each goal needs its own KPIs to monitor and measure success. 
 
Some characteristics of a good KPI: 

• it provides objective evidence of progress towards the desired result stated in the form of an 
articulated goal 

• it measures what is intended to be measured 
• It has a target for the measurement 
• it gauges performance over time 
• It has a solid data source that can be defined 

 
When evaluating performance over time, it is useful to use thresholds for the target to tell whether you are 
doing good or bad with the measurement. 
 
Here are some examples of different KPI basic types: 

• Raw numbers: "number of new customers" 
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• Progress: "% of completion% 
• Change: "% increase in sales" 
• Ratios: "cost per new customer lead" 

 
Example of a Goal / KPI set 

• Goal: We will increase our sales by 25% during 2022 (this is our desired outcome, it uses the 
SMART framework, and it is a single statement) 

• KPI 1: We have acquired 1000 new customers by the end of 2022 (quantifiable, it has a 
timeframe, we can use the CRM as data source, and we can measure this monthly) 

• KPI 2: We have increased our up-selling rate by 15% by H1/2022 (quantifiable, it has a 
timeframe, we can use the CRM as data source, and we can measure this monthly) 

2.1 KPIs in the manufacturing domain 

The most common KPIs in the manufacturing domain are either technical or economical. The downside of 
these is the fact that they can only measure things that are in numbers. This means that softer, human related 
indicators might not be accounted for. Historically the comparison of various KPIs has been difficult due 
to the varying interpretations of the measurements and indicators. The paper1 aims to define a set of 
indicators and sustainability metrics that are needed in the manufacturing domain. These indicators are then 
used to measure the performance of our use cases. The categorization of the KPIs was done according to 
the four categories presented in the paper.  
 
Sustainability in manufacturing can be measured in four categories: 

• Social sustainability 
o Human capital is the main enabler of the Factories of the Future 
o Human skills and engagement to manufacturing will determine the manufacturing 

development of Europe 
• Technical sustainability 

o Used to maintain current and develop future behavior and characteristics of the environment, 
both on real and virtual existences 

o Can offer great value for decision-making 
§ Divided into manufacturing process monitoring, manufacturing flow efficiency and 

competence of the company 
• Economic sustainability 

o Seeks to secure both short and long term profitability and economic viability 
o The ability to produce and provide products that meet the needs of customers in a profitable 

way plays a key role in economic sustainability 
o Most are related to costs with the aim of cost-reduction 

• Ecological sustainability 
o Focus is on waste and carbon emissions, conservation of energy and natural resources 
o Sustainable manufacturing consists of: 

§ Manufacturing sustainable products 
§ Manufacturing all products using sustainable practices 
 

 
1 M Lanz, E Järvenpää, H Nylund, R Tuokko, S Torvinen, K Georgoulias, Sustainability and performance indicators 
landscape, proceedings of International Conference on Flexible Automation and Intelligent Manufacturing (FAIM), 2014, pp. 
283-290 
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Table 1 KPIs identified within our Use Cases 

KPI metrics UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8 UC9 UC10 UC 11 UC12 UC13 UC14 UC15 UC16 UC17 UC18
Technical KPIs (technical scalability of system, improvement of quality, improvement of speeds, efficiency, reduction of machine errors...)
Set-up time reduction: percentage of time 
reduced comparing with previous solution

X X X

Re-configure time: compare the time it 
takes to re-program or re-setup a new 
product

X X X X X X

Cycle time: Time it takes to perform one 
cycle of operation from start to finish. The 
operation may be the full order-delivery 
cycle or a single process operation. It should 
include the waiting steps that are part of the 
process.

X X X X X X X

Throughput rate: Amount of jobs done in 
time unit

X X X X X

Production lead time (Throughput time): 
from start of manufacturing to final product 
(including testing))

X

Set-up time: Amount of time needed for 
setting up the machine including change of 
tools, fixtures, programs etc.

X X X X X X X X X X

Training time: Production time saved with 
concurrent training

X X X X

Technology swap feasibility: Percentage of 
components (HW&SW) that can be swapped 
without major changes to other components

X X

Environmental KPIs (reduction of energy consumption, reduction of material waste, reduction of poor quality products...)
Energy Consumption X
Energy Cost
Energy Efficiency X
Materials used by weight or volume X
Social KPIs (educational, skills upgrade, re-skilling, reduction of human errors....)
Labor safety: percentage of human labor 
removed from hazardous environment

X X X X X X X

Accessibility: level of open source-based 
software

X X X X X

Easiness in application: time from idea to 
operation

X X X

Training costs X X X X X
Economic KPIs (incl. Lean reduction of waste originating from 8+1 waste)
Reduction of waiting time for human 
operators, parts and products

X X

Reduction of transportation time of parts 
and products
Reduction of transportation time of tools
Cost-efficiency: reduce the time of 
operators traveling

X X

Cost-efficiency: reduce the number of 
operator, one operator can control multiple 
robots

X X X X X

Cost-efficiency: reduce the cost by using the 
robot instead of manual work

X X X X X

Cost-efficiency: reduce the cost of 
ownership (set-up, operational cost, 
maintenance, etc.)

X X X

Direct economic value generated and 
distributed, including revenues, operating 
costs, employee compensation, donations 
and other community investments, retained 
earnings, and payments to capital providers 
and governments.

X

Labor
Type of injury and rates of injury, 
occupational deceases, lost days, and 
absenteeism, and total number of work-
related fatalities by region and by gender

X
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3 Improvement of potential industrial systems 

3.1  Responding to the challenge of availability of workforce and special skills 

It can be generalized that the access and availability of personnel with specific high-tech knowledge can be 
limited for industrial companies. This means that there might not be a specialist available to engineer and 
implement the potential new automation systems or technologies in use. This is quite often the reason to 
seek for an automation integrator that can take the technologies in use or implement even a complete system 
or cell level solution. Several use cases identified that it is beneficial to improve the solutions to be based 
more on open-source technologies and standardized interfaces, thus enabling easier applicability with the 
internal engineering teams at the end customer (UC#10). It is quite typical, that companies have limited 
robotics know-how, which in turn makes it more difficult to apply customized robotic solutions. Several 
use cases had identified that this challenge could be improved by creating novel user interfaces that support 
the application of the technologies. An example of such user interface would be graphical programming 
wizards to program robots (UC#6, UC#7, UC#8, UC#12, UC#13). This way one does not have to be a robot 
specialist to generate robot programs. Another example is the use of innovative user interfaces for human 
interaction with the robotic and automation systems (UC#10). 

3.2  Regulations governing machinery 

In the European Union, the machinery directive sets the ground rules for applying technologies to form 
machinery. When the end user is applying robotics and technologies to form a robotic solution, one of the 
key questions is, when does the user become a machine supplier. This is a very important question from 
the perspective of the responsibilities and the requirements associated to these roles. This is also one reason 
why customers often seek for partners that take care of the integration and the associated requirements of 
the regulations. One improvement to the applicability of the TRINITY use case technologies could be to 
provide a set of pre-made documentation that supports the integration process and covering the needed 
regulations. Examples of such documents could be a pre-made risk analysis template for the technologies, 
or a Process Failure Mode & Effects Analysis providing keyways to eliminate process related shortcomings 
of the integration of a given technology. 

3.3  Industrial users benefit from longer life-cycle support 

Investments to industrial machinery are usually made for several years, even decades. During this period 
the support of the used technologies plays a big role. Some industrial users request for spare parts 
availability for 10-15 years. Against this background it would be essential for the TRINITY use cases to be 
based on technologies that are created based on standards, as this enables, at least to some extent the 
possibility to find support for the proposed technologies also in the next 5-10 years. 
 
Another aspect of life-cycle support is the possible limitation of the technology stack that the customers are 
willing to apply. As an example, if the customer already has robots from one vendor, it might be a difficult 
journey to try to convince a change to an alternative robot vendor. This challenge has been addressed in 
many of the proposed improvements as the target to increase the amount of suitable HW providers (UC#7, 
UC#10, UC#12, UC#17), or implementing more standard interfaces.  
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3.4  Estimating the payback 

The payback of the investment will be determined on how well the intended result will realize. In the end, 
the analysis will be made End-To-End, from the start of the implementation of these new technologies up 
to the end, when the system is being used and it is producing and generating value. This includes also the 
effort required to integrate and program the system, as well as the effort it takes to use and support it. Thus, 
it is important to make sure that the proposed technologies would be easy to approach and integrate, and 
that they would be well supported. Any investment that is constantly off-line due to missing personnel 
know-how or lacking spare parts does not produce the intended return on investment. Several use cases had 
also identified performance related improvements such as system cycle time (UC#9, UC#11, UC#18), 
energy consumption (UC#11), and reprogramming time (UC#5, UC#8, UC#9 UC#12, UC#13, UC#15, 
UC#17, UC#18) as solutions that would contribute to an improvement in output and ROI. 

3.5  The DAP and TRINITY-network helps in planning of the applications 

The expectations for the result of the integration of technologies are often optimistic and there might not 
be a clear understanding of the limits or costs of the technologies. As an example, it might be a defined 
requirement that a bin-picking solution would achieve 100% emptying grade of the material container, as 
no manual material handling is allowed. But many times, it is these extreme ends of the requirements that 
tend to raise the price tag of the integration to great extent, and this can come as a surprise to many. Many 
of the demonstrators and use cases presented by the TRINITY consortium are novel technologies, and they 
represent lower TRL levels at this stage (UC#5&6: TRL4-5; UC#7: TRL5-6; UC#8: TRL4; UC#9: TRL5-
6; UC#10: TRL5-6; UC#11: TRL5; UC#12, UC#17: TRL4-5; UC#13: TRL4-5; UC#16: TRL 4-5; UC#18: 
TRL5-6). The TRINITY DAP and the associated network offers information and services related to the 
integration and application of these modules and technologies, so that the outcome of the investment can 
be safely planned and taken into use with realistic expectations. 
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4 Cross-fertilization of demonstrators and technologies 
One of the original ideas of the cross-fertilization concept was to enable the TRINITY consortium to cross-
use the technologies and modules developed during the project to form new use cases and complement the 
existing ones with possible new functionalities. However, direct applicability has been challenging as 
applying the modules greatly benefit from access to direct guidance of the module creators. On the other 
hand, a product-like, off-the-shelf module is also not expected as the modules are of lower TRL levels. The 
use cases also vary quite a lot between each other further complicating the cross-fertilizing of new use cases 
stemming from the modules. 

4.1  Cross-fertilization amid COVID-challenges                

The outbreak of COVID-19 impacted our ability to carry-out the most efficient means of cross-fertilization 
– joint working together directly on the demonstrators at the beginning of the project. The consortium was 
able to organize some researcher exchange despite the challenging travel situations. This provided some 
opportunities to work together on the modules. As an example, this kind of exchange took place between 
the partners TAU and Flanders MAKE. Internal deep-dives, both virtually and on-premise have been 
carried out as substitutions for researcher exchange. In these sessions it has been possible to discuss and 
spread information about the modules and discuss the applications of the technologies. 

4.2  External cross-fertilization through the Open Calls 

The Open Call approach also provided further opportunities to get feedback and new ideas on the 
application of the modules and technologies. As the potential use of TRINITY modules was also built into 
the evaluation criteria for the Open Call demonstrators, there was a good base to expect some applications 
with the modules in use. COVID-19 also impacted the on-site collaboration in the Open Call demonstrators, 
especially for during the first demonstrator program. 
  
Examples of successful external cross-fertilizations can be found from the projects AGILE and ICON from 
Open Call 1, and SpinEye from Open Call 2. The AGILE project used the object detection module by EDI. 
It was used to determine the part picking pose from a tray with several parts and part types. The AGILE 
project was able to meet the set KPI for the picking cycle times, and the results were also jointly published 
in a journal. The ICON project used 3 TRINITY developed modules to complement the use cases with new 
functionalities through the modules. The ICON demonstrator was about agile electric motor manufacturing 
and in their final report they state that the system got new collaborative skills through safe human detection, 
projector-based user interface, and object classification features. The SpinEye project used the Object 
Detection Module by EDI, which is used to sense the changing environment and adjust the system's actions 
accordingly. This module is entirely responsible for detecting and accurately locating the screw holes where 
potential screws are to be mounted and thus forms an integral part of the SpinEye application. 
 
Some projects tried to use TRINITY modules but found out that they were not suitable for the demonstrator 
applications for practical or commercial reasons. For example, such try-outs happened in the projects 
PROTON Robots, Aurora, and Brilliant, all from Open Call 2. Even though the modules might not have 
been a 100 percent match for the applications, they provided valuable insight of the application in general. 
This was the case with the PROTON robots project, where they tested and tried the UWB module from 
Flanders MAKE and, in the end, ended up using another technology. Even though the TRINITY module 
was not used in the end, it provided the information on how to fine tune and validate the requirements for 
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the UWB requirements for the project. In project Brilliant the reasoning for not using the TRINITY object 
detection module was a practical one. The parts needed to be accurately picked with a two-finger gripper 
and inserted into an alignment jig, which was not feasible with the approach using the TRINITY module. 
These findings are also valuable to the TRINITY module owners, and they provide further information 
about the industrial applicability of the modules and possible improvement ways for the future. 
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Appendix A: Key Performance Indicators in Use Cases 
This appendix summarizes the identified key performance indicators in the TRINITY use cases. Each use 
case has its own chapter where the use case is described briefly, and the indicators and the respective 
definitions and measurements are described and quantified. Each use case is also analyzed for further 
improvements.  

A.1 Use-Case 1: Collaborative assembly with vision-based system 

Human-robot interaction for collaborative manufacturing requires special attention for HRI safety systems 
since robots and payloads can lead to potentially dangerous situations. We introduce a safety model that 
creates a dynamic 3D map of the working environment and at the same time ensures minimum safety 
distance between the human and robot. The model is created, updated and monitored using a single depth 
sensor.  In addition, a projector is installed on top of the work environment and robot safety zone and virtual 
user interface components are projected onto a flat surface to increase the human awareness during the task. 
 
Violation Detection success rate (DSM) 
 
Verbal definition of KPI: The KPI will represent the robustness of system regarding detection of violation 
successfully. 
 
Way to measure KPI and data source: A program will be defined to violate hazard area for ~8000 cycles. 
Two robots will be synchronized to store of time and number of actual and detected violation numbers.  
 
Quantitate KPI: Success Rate was estimated to be 99.97% 
 
Response Time (DSM) 
 
Verbal definition of KPI: The KPI will represent how fast we can move through the safety zone such that 
the system still detects violation. 
 
Way to measure KPI and data source: Robot performs linear motion between two points at different 
speeds such that its trajectory intersects with safety border. The speed at which the violation is not detected 
defines the KPI. 
 
Quantitate KPI: The robot speed was limited to 500mm/s, at which violation is still detectable, although 
not as consistently. Therefore 500mm/s will be the lower bound for the violation response.  
 
Detection resolution(DSM) 
 
Verbal definition of KPI: The KPI will represent the smallest reliably detectable object for the sensor at 
given distance. Value gives information what kind of body part tracking could be done reliably if used as a 
safety sensor. 
 
Way to measure KPI and data source: Three parts, representing common possible sizes (one small finger, 
two big fingers, palm) were tested at different heights relative to the table surface.  
 



 

 
 

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 825196 

13 

Quantitate KPI: The table represents how far objects of different sizes should stand for consistent 
detection. The maximum detection resolution could be gathered after experiment, by acknowledging the 
borderline of losing the detection signal. 
 

diameter (cm) distance above table (cm) 

1.21 44.5 

3.07 18.4 

6.3 2.88 

 
Analysis and identification of areas of improvement for Use Case 1: 
The violation was performed using deterministic robotic program, such that the pokes were executed in 
predefined points of the safety border. It can be the case that certain areas of the border would be less 
reliable for detection than the ones we've selected, so overall success rate would be lower. The test also 
doesn't take into account how different illumination conditions can affect the success rate. The improved 
test would randomize poke points around the border and run them under different illumination conditions. 
The limit on robot's movement speed doesn't allow us to test exact threshold at which the detection becomes 
unreliable. Replacing the robot with a different device would allow us to measure response time more 
accurately. The response time depends on multiple factors of the module, such as quality of the 
computational hardware used, projector's internal update rate, quality of the driver's used to message with 
the robot and the sensors. Decoupling those factors and showing how each of them could improve overall 
performance would make analysis more helpful to the user. 

A.2 Use Case 2: Collaborative dis/assembly with augmented reality interaction 

This use case utilizes AR technology in collaborative cell to provide functionalities such as safety 
monitoring, safety information and interactable user interface. Safety model that investigated in first use 
case is utilized to communicate with Microsoft HoloLens HMDs, next AR HMD augment the user 
instruction, and demonstrate safety borders in real time and actions required regarding facing safety 
measures.   
 
Assembly Completion Time: 
 
Verbal definition of KPI: The KPI will represent the required time from operator to finish successful 
engine assembly task. 
 
Way to measure KPI and data source: User will start the assembly task by confirming it on AR HMD 
and follow all instructions for the assembly task. The completion time will be gathered by researcher with 
timer. Assembly completion time with AR system was compared to the assembly task without augmented 
user interface. 
 
Quantitate KPI: The improvement in assembly task completion time in percentage is compared to non-
collaborative system. 
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Non-collaborative assembly AR-based collaborative Improvement 

82.9 s 65.4 21-24% 
 
Total Robot Idle Time: 
 
Verbal definition of KPI: The KPI will represent the required time from robot to wait operator finishes 
the all tasks. 
 
Way to measure KPI and data source: The motion of robot during the task is monitored in both AR and 
non-AR system and compared to the assembly task completion. 
 
Quantitate KPI: The improvement in robot idle time in percentage is compared to non-collaborative 
system. 
 

Non-collaborative assembly AR-based collaborative Improvement 

27.6 s 12.0 s 57-64% 
 

Analysis and identification of areas of improvement for Use Case 2: 
The tests were performed on a small group of people from the university, whose subjective evaluation can 
differ from the people who may use this module in the industry. Performing tests with the users from the 
industry with a bigger sample size would make the estimation more accurate. 

A.3 Use Case 3: Collaborative Robotics in Large Scale Assembly, Material Handling 
and Processing 

An agile industrial robotization of a large-scale material handling, processing or prefabrication where robots 
and people will process components collaboratively is demonstrated. The working zone is monitored 
dynamically, and information is provided to both parties: the human worker and robot. Different 
multimodal human-computer interaction methods are evaluated. This ultimately leads to more agile 
robotized production, where humans and robots may work together in tasks such as large-scale assembly, 
material handling and processing. Main objective of this use case is to demonstrate the possibilities of large-
scale industrial robotics in collaborative tasks. This use case demonstrates a novel combination of safety 
sensors and additional devices that make true human-robot collaboration possible, while still following 
safety regulations and standards. In addition, dynamic and flexible robot trajectory generations are 
demonstrated. 
 
Production lead time: from start of manufacturing to final product: 
 
Verbal definition of KPI: Production lead time from start to finish. Including set-up and re-configuration 
of robot. 
 
Way to measure KPI and data source: Time to perform deburring process of enclosure from start to 
finish. Comparing conventional robot programming to reactive robot programming.   
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Quantitate KPI: 
Reactive solution: 
Time consumed 10 - 60 minutes depending of the product complexity. 
Conventional solution: 
Time consumed 60 - 240 minutes depending of the product complexity. 
 
Set-up time: 
 
Verbal definition of KPI: Amount of time needed for setting up the machine including change of tools, 
fixtures, programs etc. 
 
Way to measure KPI and data source: Time consumed to setup robot program to wash heavy equipment 
compared between conventional and reactive robot programming. 
 
Quantitate KPI: 
With the use case: 45 - 120 minutes depending of the product complexity for any product type. 
Without the use case: 3 - 8 days depending of the product complexity for each product type. 
 
Materials used by weight or volume: 
 
Verbal definition of KPI: Amount of water required to wash a truck manually 
 
Way to measure KPI and data source: Amount of water required to wash a truck using robots 
 
Quantitate KPI: 
Robotized solution: 
Water consumed  100 - 200 liters (with efficient water circulation and cleaning system). 
Manual Labour: 
Water consumed 1000 - 2000 liters. 
 
Labor safety: 
 
Verbal definition of KPI: Percentage of human labor removed from hazardous environment 
 
Way to measure KPI and data source: Percentage of persons required to wash a truck 
 
Quantitate KPI: 
Robotized solution: 
100%, no person involvement in hazardous environment required 
Manual Labour: 
At least one person required. 
 
Analysis and identification of areas of improvement for Use case 3: 
Some improvements for the use case demonstration 3 could for example replacing ROS1 based modules 
with ROS2 to improve cybersecurity, and/or developing of more Open source solutions as alternatives of 
proprietary software. 
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A.4 Use Case 4: Integrating digital context to the digital twin with AR/VR of the 
robotized production 

The use case demonstrates the possibilities for utilizing digital context data into production of 
manufacturing companies, which provides an agile way for automating manufacturing processes. The use 
case involves utilizing BIM, VR/AR technology and a digital twin of a robotic production cell. These 
methods can be used for flexible monitoring, operational support, training, safety and maintenance purposes 
of the production cell. To showcase the use of digital context data in manufacturing. Integration of robot 
trajectory data into product design provides an agile way for automating manufacturing processes and 
speeds up the design-production timeline. Complete VR/AR environments can be built and used for flexible 
monitoring, support, training, safety and maintenance. 
 
Training costs 
 
Verbal definition of KPI: Saved costs in travelling for training 
 
Way to measure KPI and data source: Take one experiment with Norway as the example, by using our 
remote-control solution, Narvik engineers can control Centria Robo3D Lab robots remotely. Measure the 
travelling time between Centria and UiT. 
 
Quantitate KPI: By the estimating of Google map, the travel time from Centria in Ylivieska to UiT in 
Narvik and then back is 22 hours by car driving. 
 
Direct economic value 
 
Verbal definition of KPI: Reduce the training cost by replacing traditional teaching with virtual training 
 
Way to measure KPI and data source: Compare the time required for safety training traditionally to 
virtual safety training 
 
Quantitate KPI: Can be up to four times faster compared to traditional teaching. Based on company 
experiences (ADE oy) 
 
Analysis and identification of areas of improvement for Use Case 4: 
Some improvements such as implementing modules with open-source Game engine Godot and/or adding 
more augmented reality examples based on WebGL could be considered. 

A.5 Use Case 5: Automated robotic welding 

The industrial robot has an important role in the automation of the manufacturing industry and has 
considerably contributed to the improvement of profitability and working environments. However, there 
are still many tasks in the manufacturing industry that requires heavy work, such as welding and additive 
manufacturing based on welding. The objective of the demonstrator is to showcase how an industrial robot 
can be used for robotic welding and wire arc additive manufacturing (WAAM). 
 
Set-up time reduction 
 
Verbal definition of KPI: Percentage of time reduced compared with previous setup 
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Way to measure KPI and data source: To test this KPI two tests are conducted, one for welding a line 
and a second test for welding a half circle.  (Compare between Digital Twin solution and Teach Pendant 
programming) 
 
Quantitate KPI: As described in the example of the introduction chapter 
In the test the time from start of welding to the weld is done. From the test we got the following result:  
 

 
Robot welding (sec) Manual welding (sec) Percentage (%) 

Welding line: 87  100  14.9 

Welding circle: 155  173  11.6 

 
Average reduced percentage = (14.9+11.6) / 2 = 13.25% 
 
Re-configure time 
 
Verbal definition of KPI: Compare the time it takes to re-program or re-setup a new product 
 
Way to measure KPI and data source: We will measure the time it takes to program with the new 
interface compared to using the teach pendant. This will be done for the welding robot using the teach 
pendant and using the digital twin.  
 
Quantitate KPI: 
 

Programming method Weld half circle (min) Weld line (min) 

Teach pendant programming 7.8 5.23  

Digital twin programming 4.57 1.95 
 
 
Reduced percentage = (Teach pendant programming - Digital twin programming)/Teach pendant 
programming 
Half circle = (7.8-4.57)/7.8 = 41.4% 
Line = (5.23-1.95)/5.23 = 62.7% 
Average reduced percentage = (41.4 + 62.7)/2 = 52.05% 
 
Cost-efficiency (reduce ownership cost) 
 
Verbal definition of KPI: Reduce the cost of ownership (set-up, operational cost, maintenance, etc.) 
 
Way to measure KPI and data source: Calculate the robotics engineer salary in hour, then multiply the 
reduced percentage (Set-up time reduced, re-configure time reduced percentage). 
 
Quantitate KPI: 
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Robotics Engineer average salary in Norway 2022 is 593000 NOK 
http://www.salaryexplorer.com/salary-survey.php?loc=162&loctype=1&job=12657&jobtype=3 
593000 NOK /12 Month /4 week/5 day/8 hour = 308 NOK /hour 
Set-up cost reduced = 308 * 13.25% = 40.81 NOK/hour 
Re-configure cost reduced = 308 * 52.05% = 160.31 NOK/hour 
 
Analysis and identification of areas of improvement for Use Case 5: 
The demonstrator exploits an industrial robotic arm to automate repetitive welding jobs that result in more 
consistent welds and fewer mistakes. Remote programming of the system (offline programming). This 
allows for verification of the welding program before running it on the physical robot and you can program 
the system without interrupting the current production which can save costs. Using robotic welding releases 
humans from the labour-intensive and hazardous work environment. The system can be used for additive 
manufacturing, to repair broken parts or 3D print parts. This can be a fast and cost-effective method to 
create or fix damaged parts. 

A.6 Use Case 6 - Digitalization of a production environment 

Factories of the future will face increasing demands for non-stop production, accompanied with high 
flexibility and safety requirements. This implies an important future market, for instant services dealing 
with support, error diagnostics and reconfiguration of industrial robot systems. These advances can be 
achieved by utilizing IoT in every stage of the production process in a factory. Based on the collected data, 
decisions can be made even from distant locations. This demonstrator illustrates how to create a digital 
copy of a production environment. It will also show how robots and other machines can be connected and 
controlled from the same industrial information server. 
 
Accessibility 
 
Verbal definition of KPI: Level of open source-based software 
 
Way to measure KPI and data source: Calculate the amount of open-source software we have used 
compared to the one that are not open source 
 
Quantitate KPI: 
Open-source software: Python, OPCUA, PyCharm, ROS, MoveIt, Node-red, KUKA RSI, 
KUKAVARPROXY, Ubuntu 
 
Commercial software: Visual Components, Visual Components Experience, Windows 10, TeamViewer, 
Azure Cloud, MiR software 
 
KPI: Open: 9 Not-open:6 
 
Cost-efficiency (reduce travel time) 
 
Verbal definition of KPI: Reduce the time of operators traveling 
 
Way to measure KPI and data source: Take one experiment with Finland as the example, by using our 
remote-control solution, Centria engineers can control the Nachi robot remotely. Measure the travelling 
time between Centria and UiT. 
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Quantitate KPI: By the estimating of Google map, the travel time from Centria in Kokkola to UiT in 
Narvik and then back is 22 hours by car driving. 
 
Cost-efficiency (reduce operator number) 
 
Verbal definition of KPI: Reduce the number of operators, one operator can control multiple robots 
 
Way to measure KPI and data source: The traditional way of programming industrial robots needs one 
operator to hold the teach pendant of the robot. By using usecase 6, one operator can control KUKA robot, 
Nachi robot, Scara robot at same time. 
 
Quantitate KPI: The number of operators reduced from 3 to 1 
 
Cost-efficiency (automation replace manual) 
 
Verbal definition of KPI: Reduce the cost by using robot instead of manual work 
 
Way to measure KPI and data source: Calculate the human salary and the robot cost, then compare it. 
 
Quantitate KPI: 
Norway average month salary 48750 NOK 
48750 NOK /4 week/5 day/8 hour = 299 NOK / hour 
Industrial robot system investment cost around 300000 NOK, expected working for 10 years. 
300000 NOK/10 year / 365 day / 24 hour = 3.42 NOK / hour 
 
KPI: 299 vs. 3.42 
 
Analysis and identification of areas of improvement for Use Case 6 
The main benefits of the demonstrator revolve around increased flexibility by digitalizing a production 
environment and connecting robots and other machines together.  Data from a production system can give 
an enhanced insight into the performance of the system for improved visualization. It creates a unified 
method for robot programming which simplifies and standardizes the procedure of robot programming. 
Which again creates a friendly and simple environment for training of employees. The system is made to 
be flexible and scalable, where robot arms, mobile robots and other machines can be added or removed to 
the IoT system without compromising the current system. The use case creates an agile method for 
connecting robots and other machines together through a standardized industrial information server (OPC 
UA standard). 

A.7 Use Case 7 - Robot workcell reconfiguration 

The aim is to provide the manufacturing SMEs and also larger manufacturing companies effective software 
and hardware components to quickly reconfigure manufacturing workcells in order to switch from one 
production process to another. Innovative reconfigurable hardware elements with passive (non-actuated) 
degrees of freedom enable partial autonomous (robot-aided) reconfiguration of robot workcells. Passive 
fixtures, based on Stewart platforms, are used to adapt the fixture points based on the current product. ROS-
based software provides necessary modularity to exchange the workcell's software and hardware 
components, as required when switching from one production tasks to another. Software tools include, 
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among other, automatic computation of optimal postures of fixtures and workpieces, and robot control for 
robot-aided reconfiguration of the available passive hardware elements. 
 
Times of reconfiguration (HW & SW): 
 
Verbal definition of KPI: The time to reconfigure the full cell can include manual, automatic, and robot-
aided reconfiguration of hardware components. In addition, software must enable adaptation to change to 
various products. This KPI was determined based on 4 implemented cases from various sectors calling for 
different levels of needed reconfiguration.  
 
Way to measure KPI and data source: The time was determined as an average value over 4 different 
cases. As this KPI is highly depended on similarity and familiarity of the products, it is given in four values.  
 
Quantitate KPI: 

• Known product to another known product within the same family:  ~2 min 
• Known product to another unknown product within the same family: 1 day 
• Known product to another known product from another family:  ~5 min 
• Known product to another unknown product from another family: 15 days 

 
Time of robot-aided reconfiguration 
 
Verbal definition of KPI: Robot-aided reconfiguration time is defined as the time needed to change the 
process from one product to another, when all the reconfiguration can be done with the robot and no manual 
intervention is needed. While manually reconfigurable elements can be included in the cell, this KPI focuses 
only on robot-aided reconfiguration of fixtures. The time needed to reconfigure the workcell depends highly 
on the products and needed reconfigurable elements. 
 
Way to measure KPI and data source: A specific case from the automotive industry was used to quantify 
this KPI, where the cell reconfigured between two products from the same family. In order to further detail 
the KPI, not just full reconfiguration is looked at, but also sub-reconfigurations.  
 
Quantitate KPI: 

• Full reconfiguration 4’4” 
The time needed to fully reconfigure the cell, including the repositioning of the three fixtures and 
exchanging three holding pins. 

• Fixture layout reconfiguration 42” 
The time needed to reconfigure all three needed fixtures. 

• Single fixture reconfiguration 12” 
The time needed for a single fixture reconfiguration. 

 
Computational time for optimal layout 
 
Verbal definition of KPI: As determining optimal layout of passive fixtures is near to impossible by hand, 
optimization processes are used to determine it. This KPI looks at computational time needed for layout 
computation based on desired inputs (product CAD models, cell footprint, workspace limitation, etc.). 
 
Way to measure KPI and data source: We performed optimization for layouts with M = 2, . . . , 6 
workpieces and N = 3, . . . , 6 hexapods (or fixture points), thus altogether 20 different layouts. The 
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arrangement of fixture points on each modular workpiece was randomly selected.  The optimization 
procedure was executed on a desktop computer with the 4th generation Intel Corei7-4790K CPU having 4 
cores running at 4.00 GHz base frequency and 16 GB of RAM. 
 
Quantitate KPI: The bar graph shown on the left illustrates the computation time needed to solve each 
optimization problem, whereas the bar graph on the right presents the time needed for one evaluation of the 
criterion function and constraints. 
 

 
Figure 1 Computation time needed to solve each optimization problem 

 
 
Analysis and identification of areas of improvement for Use Case 7 
The optimization procedure was executed on a desktop computer. If optimization ran often, a dedicated 
machine would improve calculation times. Optimization or transfer of code would further improve 
computation times. Changing of pins is time consuming. If possible, we could improve 
pins/workpieces/production process to avoid or minimize the need.  Robot movements are not optimal 
during evaluation of fixture reconfiguration times. Optimization of trajectories could be considered for 
reconfiguration and for ensuring robot’s full speed. 

A.8 Use Case 8 - Efficient programming of robot tasks by human demonstration 

End-users often cannot program their robots without the help of system integrators, as traditional systems 
for programming of industrial robots are still quite complex and rely on users possessing extensive 
knowledge about advanced robotics concepts. This in turn prolongs the required programming time and 
increases the price of robot applications. Use Case 8 address these challenges by providing a software and 
hardware framework that include both front-end and back-end solutions to integrate programming by 
demonstration paradigm based on kinesthetic teaching into an effective system for programming of robot 
tasks, e.g. automated robot assembly. 
 
Effect of virtual mechanism for hard to transfer tasks 
 
Verbal definition of KPI: A force-based task of grinding/polishing is considered a representative hard to 
transfer industrial task. This type of a tasks can be transferred via learning by demonstrations using various 
sensors, e.g. digitizer with force/torques sensors. To facilitate execution of a learned grinding/polishing 
task on an industrial robot, an approach based on virtual mechanisms has been implemented. It takes 
advantage of redundancies stemming from the task and tool shape. The effect of virtual mechanism was 
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evaluated by looking at peak joint velocities of the robot and successfulness of task execution at different 
points in the robot's workspace.  
 
Way to measure KPI and data source: The grinding machine, i.e. the desired point of task execution, 
was moved to several different locations in the robot's workspace. The same learned grinding task was 
executed at each of the locations. The orientation of the grinding machine and its height was not changed. 
In addition peak joint velocities were recorded. 
 
Quantitate KPI: The results, seen in figures below, show the increase of the robot's workspace, where the 
task can be performed and a significant drop in peak joint velocities.  
 
 

 
Quality and efficiency of incremental policy refinement by human demonstration    
 
Verbal definition of KPI: To shorten the time necessary to deploy robot tasks, we need appropriate tools 
to enable efficient reuse of existing robot control policies. Incremental Learning from Demonstration (iLfD) 
and reversible Dynamic Movement Primitives (DMP) provide a framework for efficient policy 
demonstration and adaptation. The quality and efficiency of the approach was evaluated with a 
comprehensive user study.   
 
Way to measure KPI and data source: Different aspects were looked at in the user study for the three 
learning methods: 1) classical kinesthetic guidance (KG), i.e. manual guidance, 2) incremental policy 
refinement using batch regression (BR), and 3) incremental policy refinement using recursive regression 
(RR). During the experiment, the participants stood next to a small table with a shoe model mounted and 
were instructed to move the robot in such a way that the tip of the stick moves along the edge of the shoe 
sole from a start to the goal point which were both marked visually on the shoe. Task was performed using 
all three learning methods. Nineteen healthy subjects participated in the study (13 male, 6 female, age: 
34.63 ± 14.59 years). 
 
Quantitate KPI: The plots in the below figure shows the means and standard errors (SEM) for different 
aspects for the three learning methods. We can observe incremental learning reduces error, shortens 
learning time and improves the user experience.  
 

Figure 2 Without virtual mechanisms Figure 3 With virtual mechanisms 
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Figure 4 the means and standard errors (SEM) for different aspects for the three learning methods 

 
Analysis and identification of areas of improvement for Use Case 8 
There are also some exceptions where our approach of incremental learning cannot be directly applied, e. 
g. when we need to modify the trajectory in the tangential direction. Changing the depth of peg insertion is 
such a case. Extensions that allow coping with such issues remain for our future work. With hard to transfer 
tasks, some finishing operations in industrial environments require the acquisition of several different 
finishing policies, which must be automatically combined and sequenced to treat different workpieces 
successfully.  

A.9 Use Case 9 – Dynamic task planning & work reorganisation platform 

This use case focuses on the planning of tasks’ allocation among the available resources in HRC processes. 
Task allocation in synchronous HRC environment including several resources is a time-consuming process 
which currently takes place manually by the teams of production’s managers. In order to overcome 
the time-consuming process of designing a new human-robot task allocation plan and reduce the time and 
size of the design team needed for applying a change to an existing line, this module suggests a multi – 
level decision making framework targeting on the dynamic work balancing among the human operators 
and robot resources using a task planner algorithm. This will allow the evaluation of a huge number of 
alternative solutions in a short time frame, even in cases where reconfiguration of the production line is 
needed. A suitable Task planning regarding the available human and robot resources will be generated 
automatically. An intelligent decision-making framework for task allocation to the available resources in 
the production line, motion planning of robot operations and criteria estimation will be implemented. The 
3D graphical representation, simulation and embedded motion planning for both humans and robots will 
be possible. 
 
 
Re-configure time 
 
Verbal definition of KPI: The AI task planner module is reconfigurable in terms of easy changes on search 
parameters and weight values of evaluation metrics, through its UI. 
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Way to measure KPI and data source: Measure the average time the task planner needs to generate and 
evaluate new alternative task plans based on new search parameters and weight values of the evaluation 
criteria, starting from a clean stop. 
 
Quantitate KPI: This KPI has been measured through testing. During the execution of a planning process, 
the user stopped the AI task planner through the developed UI and the time duration calculated from this 
time frame until the end of the planning parameters’ update through the corresponding UI tab and planner’s 
execution trigger. The average duration of the planner’s reconfiguration was 3 minutes. 

 
Cycle time 
 
Verbal definition of KPI: The developed AI Task Planner module is able to generate and evaluate different 
task plans alternatives and provide to the production manager the top three alternatives in a specific amount 
of time. The cycle time depends on the search algorithm parameters but for the selected use case it has been 
observed that the following values give good results [DH, MNA, SR] = [2, 2, 2]. 
 
Way to measure KPI and data source: Measure the average time the task planner needs to generate and 
evaluate alternative task plans. 
 
Quantitate KPI: This KPI has been measured through testing. The average duration of the planner’s cycle 
time was 2.5 hours. 
 
Set-up time 
 
Verbal definition of KPI: The time needed to model the resources and tasks but also setup the simulation 
environment with intermediate knowledge on ROS 
 
Way to measure KPI and data source: Measure the average time required by a user with intermediate 
knowledge on ROS to configure the planner, creating models for the resources and tasks but also setup the 
simulation environment. 
 
Quantitate KPI: It has been measured that 3 weeks are needed to setup the AI task planner in terms of 
tasks and resources modelling but also the required simulation environment. 
 
Labor Safety 
 
Verbal definition of KPI: The total weight of the payload that the operator could handle during a generated 
task plan execution can be adjusted through the respective parameters through the task planner’s UI. 
 
Way to measure KPI and data source: Measure the reduction of the total weight that the operator handles 
during the execution of each generated task plan. This information is provided by the AI-based Task 
Planner, using tasks’ and resources’ models. This number is calculated using the following equation: 
(Operator handling weight during generated task plans execution / Initial operator handling weight) * 
100% 
 
Quantitate KPI: 50% (Operator handles parts of maximum weight 1 kg). 
 
Reduction of waiting time for human operators, parts and products 
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Verbal definition of KPI: Reduction of the idle operator time waiting for parts and products to become 
available or being processed. 
 
Way to measure KPI and data source: Measure the reduction of the idle operator time during the 
execution of each generated task plan. This information is provided by the AI-based Task Planner thanks 
to tasks and resources’ modelling. This number is calculated using the following equation:  
(Operator idle time during generated task plans execution / Initial operator idle time) * 100% 
 
Quantitate KPI: 40%. 
 
Analysis and identification of areas of improvement for Use Case 9 
Design and implementation a more user-friendly interface for the task planner should be created. This could 
incldude parameters providing more details about the tasks modelling to the production manager. Design 
and implementation of a generic ROS interfaces for the AI task planner should be realised. This would 
allow better the system to communicate with more simulation tools for generated task plans simulated 
execution during the validation and evaluation phase. 
 

A.10 Use Case 10 – AR based operator support in HRC / HRI framework for 
operator support in HRC operations 

In currently established production systems, the operator support is based mainly on paperwork (to provide 
assembly instructions) or dedicated monitors on PCs located in each workstation. Thus, the operator is not 
able to have access to this information while working in the station. At the same time, the paperwork-based 
instructions need to be constantly updated when new products or new variations are introduced. 
Additionally, the paper-based information sharing approach could not be used in other cases, such as 
informing the operators for potential hazards or provide information on the status of the production. This 
use-case demonstration aims at enhancing operator support by providing instructions and production-
related information through an AR application. Furthermore, the implemented AR app also targets at 
increasing operator's “safety feeling” and acceptance when working close to large industrial robots by 
visualizing data coming from a robot's controller and by displaying visual alerts to increase their awareness 
for a potentially hazardous situation (Figure 1).   
 
To this direction, the developed AR Application provides to the human operators: 

• Assembly instructions 
• Robot behaviour information for increasing safety awareness 
• Safe working volumes 
• Production status information 
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Figure 5 AR Application functionalities 

 
Set-up time 
 
Verbal definition of KPI: The time needed to setup the AR application. 
 
Way to measure KPI and data source: Measure average time to deploy the AR application. 
 
Quantitate KPI: 10 minutes. 
 
Training time 
 
Verbal definition of KPI: The time related to the training of the operator to use the AR application. 
 
Way to measure KPI and data source: Consider average time needed to train an operator to use the AR 
application. 
 
Quantitate KPI: 1 hour. 
 
Accessibility 
 
Verbal definition of KPI: The level of open source-based software used to develop the components of the 
Use Case. 
 
Way to measure KPI and data source: Consider whether the software tools used during the Use Case 
implementation are open source or require a purchased license. 
 
Quantitate KPI: Three main software components are used for the Use Case implementation: 

• Safety sensors configuration software → License purchase is required 
• Unity3D (and the Vuforia library) for building the AR application → open-source 
• ROS framework → open-source 

Therefore, 2/3 of the required software components are based on open-source libraries. 
 
Training Costs 
 
Verbal definition of KPI: The cost related to the training of the operator to use the AR application. 
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Way to measure KPI and data source: Consider average 1 hour needed to train a small group of operators 
to use the AR application and 80 euros the average hourly rate. 
 
Quantitate KPI:  Measurement: Training cost = (training cost) * training time, where training cost = cost 
per hour of training 
Training cost = 80 euros per group 
 
Analysis and identification of areas of improvement for Use Case 10 
 
The possible ways forward would be to enhance robot behaviour information provided by projecting robot’s 
future way of movement to increase operator awareness. Secondly to enhance AR application 
functionalities to provide the operators ability to reprogram the robot through the application. And possibly 
also to include voice commands support to the application to interact with the robot during execution. And 
finally, to simplify the process of creating assembly instructions through user-friendly GUIs. 

A.11 Use Case 11 - Robotized serving of automated warehouse 

The demonstrator was created as a fully functional, scaled-down, table-top model of an automated 
warehouse served by an omnidirectional mobile robot. The specific goal was to demonstrate the feasibility 
of using omnidirectional mobile robots in intralogistics. The demonstrator is based on a mobile robot 
equipped with three Omni wheels (Kiwi-drive). The automated warehouse in the demonstration is a pen-
vending machine operated by a microcontroller. The vending machine has three slots for holding three 
different coloured pens and serving one pen at a time. The robot recognises the task by a label-coded card 
shown to its camera using optical character recognition (OCR).  The potential users are SMEs dealing with 
smart assembly involving mobile robots. The demonstration incorporates existing AGV technologies 
widely used in intralogistics (optical line following) and emerging technologies (visual servoing). Possible 
benefits include applications with mobile robots, optical character recognition, target detection, and 
controlled manoeuvring, path tracking without compromising safety. The owner of the demonstrator is the 
Budapest University of Technology and Economics (BME). 
 
 
 
Cycle time 
 
Verbal definition of KPI: The time it takes to perform one cycle of operation from start to finish. The 
operation is the full order-delivery cycle (see figure below). It includes the waiting steps that are part of the 
process. 
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Figure 6 The full order-delivery cycle 

 
Way to measure KPI and data source: The KPI can be measured directly in the robot control software 
by subtracting the current time when a label-coded card is recognised, and the robot arrives at the starting 
position. The result is given in Seconds per Part. 
 
Quantitate KPI: Results of four consecutive order-delivery cycles: 
 

Cycle number Cycle time (s/part) 

1 59 

2 57 

3 54 

4 59 

Average 57.25 
 
Throughput rate 
 
Verbal definition of KPI: The Throughput rate is the number of cycles of operation done from start to 
finish in a given period. 
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Way to measure KPI and data source: The KPI can be measured directly in the robot control software 
by calculating the reciprocal of the Cycle time. The result is given in Parts per Minute. 
 
Quantitate KPI: 
Results of four consecutive order-delivery cycles: 
 

Cycle number Throughput rate (parts/min) 

1 1.02 

2 1.05 

3 1.11 

4 1.02 

Average 1.05 

 
Energy Consumption 
 
Verbal definition of KPI: Energy Consumption is the amount of used electrical energy in one cycle of 
operation from start to finish. 
 
Way to measure KPI and data source: The KPI can be measured directly in the robot control software 
by calculating the weighted sum of the products of the electrical current consumption with the battery 
voltage in each refresh cycle between the mobile robot and the control PC. The weight is the periodicity of 
the refresh cycle: 10 ms. The result is given in watt hours (Wh). 
 
Quantitate KPI: Results of four consecutive order-delivery cycles: 
 

Cycle number Energy Consumption (Wh) 

1 1.27 

2 1.23 

3 1.16 

4 1.27 

Average 1.23 
 
Analysis and identification of areas of improvement for Use Case 11 
Although the advantages of using an automated warehouse are apparent through the demo, the benefits are 
not quantifiable. Accordingly, the end customer benefits are positive. The economic impact cannot be 
applied directly to the demonstrator. Omnidirectional drives, especially Kiwi-drive systems, are rarely used 
in intralogistics due to their complexity. Baseline values cannot be found because every solution is different. 
The KPIs could deviate by orders of magnitude. The KPIs are based on the goods transported, the effective 
length of the path the robots cover, the characteristic travelling speeds, etc. 
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Generally, the selected KPIs can be improved in the following ways: 

• Cycle time and Throughput rate can be improved by increasing the characteristic travelling speeds 
or by shortening the path, 

• Energy Consumption can be improved by decreasing the characteristic travelling speeds or by 
lowering the overall mass of the mobile robot, including the transported goods. 

A.12 Use Case 12 - User-friendly human-robot collaborative tasks programming 

There is a shift from mass production to mass customization which implies a constant need for robot 
programming/reprogramming. This process requires time and expertise which is therefore very costly. The 
goal of this demonstrator is to intuitively program and reprogram a collaborative robot by means of a user-
friendly user interface to lower the programming time but also the required expertise. To validate the 
benefits of the user-friendly module in manufacturing industries, a relevant industrial use-case is selected 
which is the assembly of an air compressor from Atlas Copco composed of various elements. The assembly 
is performed from a kitting tray. This assembly consists of various jobs with varying complexity. The most 
complex steps are the peg-in-hole of the screw rotors inside the compressor housing. 
 
The main goal of the experimental validation is to perform the air-compressor assembly using the intuitive 
programming framework. Initially, the operator receives a basic overview of the skill-based framework and 
how to interact with it. The operator starts his experimentation with the main page of the web interface. 
The experiment consists of programming the assembly sequence by an appropriate sequence of skills and 
parametrization of the device primitives. The operator will be free to select the different skills of interest to 
correctly perform the complete assembly. The second experiment consisted of modifying the existing task 
for a product variant. In comparison with the first assembly, the kitting tray is moved and fixed to a different 
location. Consequently, all the kinematic parameters needs to be adjusted for this second experiment. In 
addition, the housing of the compressor is made with a cast iron process. The main consequence of this lays 
in the different force parameters that also differs from the first assembly and requires significant changes 
in the device primitive parameters. At the start of the experiment, the operator will re-use the previously 
taught application. To adapt the skills and device primitives, positions need to be adapted to match the new 
locations. 
 
Programming time 
  
Verbal definition of KPI: Time to program an assembly from the user interface (with robot and gripper 
previously configured). 
 
Way to measure KPI and data source: 
Simple assembly: time to intuitively perform an assembly with a minimum of 4 pick and place operations. 
Complex assembly: time to intuitively perform an assembly with a minimum of 4 pick and force-based 
insertion operations. 
 
Novices are persons with no knowledge in robotics, experts have experience in robotics. 
The measure of the KPI is performed by recording the time it takes to perform the programming of a 
simple/complex assembly. 
 
Quantitate KPI: 
Simple assembly: 30min 
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Complex assembly: 56min (novice), 46 min (expert) 
 
Reprogramming time 
 
Verbal definition of KPI: Time to reprogram an assembly from the user interface. The intuitive 
reprogramming consists in modifying an existing program that was intuitively taught. 
 
Way to measure KPI and data source: 
Simple assembly: time to intuitively perform an assembly with a minimum of 4 pick and place operations.  
Complex assembly: time to intuitively perform an assembly with a minimum of 4 pick and force-based 
insertion operations.  
 
Novices are persons with no knowledge in robotics, experts have experience in robotics. 
The measure of the KPI is performed by recording the time it takes to perform the reprogramming of a 
simple/complex assembly. 
 
Quantitate KPI: 
Simple assembly: 15min 
Complex assembly: 32min (novice), 23 min (expert) 
 
Skill programming time 
 
Verbal definition of KPI: Time to program a simple skill (e.g. Pick) or a complex skill (e.g. Forced-based 
insertion). 
 
Way to measure KPI and data source: The measure of the KPI is performed by recording the time it 
takes to perform the programming of a simple/complex skill. 
 
Quantitate KPI: 
Simple skill< 5 min 
Complex skill < 10 min 
 
Teach by demonstration time  
 
Verbal definition of KPI: Time to teach a simple pose by guiding the robotic arm to a specific location. 
 
Way to measure KPI and data source: The measure of the KPI is performed by recording the time it 
takes to perform the programming of a point by guiding the robotic arm to a specific location. 
 
Quantitate KPI: < 30s 
 
Teach trajectory by demonstration time 
 
Verbal definition of KPI: Time to teach a trajectory (set of joint positions) by guiding the robotic arm 
through a set of specific locations. 
 
Way to measure KPI and data source: The measure of the KPI is performed by recording the time it 
takes to perform the programming of the multiple points by guiding the robotic arm.  
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Quantitate KPI: < 1min 
 
Launch full application time 
 
Verbal definition of KPI: Time to launch the application from a compiled code with robotic and gripper 
devices being properly configured. 
 
Way to measure KPI and data source: The measure of the KPI is performed by recording the time it 
takes to launch the application through the command line terminal in Ubuntu and properly launch the 
robotics application on the teach pendant. 
 
Quantitate KPI: < 5 min 
 
Easiness in application 
 
Verbal definition of KPI: Time to re-program an application from an idea to operation. 
 
Way to measure KPI and data source: The measure of the KPI is performed by recording the time it 
takes to test several ideas of robot sequence of actions and skills (with parameter tunning).  
 
Quantitate KPI: 1-2 hours (this measure is heavily dependent on the full application) 
 
Analysis and identification of areas of improvement for Use Case 12 
The improvement for the use case could include e.g. extending the device library of Easy Programming 
Module to cover a larger variety of robot and gripper: UR,  MiR, KUKA 
KMR, Franka Emika Panda, OnRobot, Schunk, etc. and showing that different brands of robot and grippers 
can achieve the assembly by interacting with the same developed interface for the offline programming. 
The skill library could be extended to include the available device primitives can be extended to allow a 
larger variety of operations. And finally the user interface could be improved to be more intuitive and 
therefore save programming time (e.g. add sliders, improve navigation in the interface, etc.). 

A.13 Use Case 13 - Deployment of mobile robots in collaborative work cell for 
assembly of product variants 

The aim of this demonstrator is show the capabilities of mobile manipulators in work places shared by 
humans. Mobile collaborative robots allow to deploy robotics in manufacturing operations with unlimited 
reach. Their on-board and external sensing systems allow to realize autonomous and agile manufacturing 
that can cope with variability. Achieving higher reconfigurability and flexibility with mobile 
manipulators require intuitive and quick reprogramming. KMR iiwa is a combination of LBR iiwa robot 
and an omnidirectional mobile platform KMP 200 omniMove with high degree of flexibility and mobility 
programmed on Sunrise.OS. Sunrise.OS uses classical programming methods requiring an expert 
with profound background in JAVA. In context of flexible assembly tasks, the application programmed 
can neither be scaled up nor reused and reprogramming is required from scratch with new setting. Hence, 
there is a need for an intuitive and quick programming/reprogramming interface for KMR iiwa which can 
be easily used in conjunction with skill-based programming frameworks. Developed toolbox works on top 
of the KUKA Navigation Solution utilizing the autonomous functionalities of the KMR iiwa. Mobile 
kitting application for compressor parts was developed using the proposed toolbox. Developed toolbox 
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allowed reproducing the application quickly and flexibly even with different frameworks & in different 
setting with decreased time and effort. Another module that has been developed and is being used in the 
validation cases is indoor positioning toolbox based on Ultra-Wideband (UWB) radio technology. The goal 
of this module is to enable localization of mobile objects in GPS-denied environment.   
 
Programming time 
 
Verbal definition of KPI: Time to program a mobile manipulation application for kitting of parts. 
 
Way to measure KPI and data source: 
Simple application: Go from Location A to B -> Go from Location B to C 
Complex application: Go from Location A to B -> Perform task X -> Go from Location B to C 
The measure of the KPI is performed by recording the time it takes to perform the programming of a 
simple/complex application. 
 
Quantitate KPI: 
Simple application: < 15 min 
Complex application: < 30 min 
 
Reprogramming time 
 
Verbal definition of KPI: Time to reprogram a mobile manipulation application for kitting of parts. 
 
Way to measure KPI and data source: 
Simple application: Go from Location A to C -> Go from Location C to B 
Complex application: Go from Location A to B -> Go from Location B to C -> Perform task Y  
The measure of the KPI is performed by recording the time it takes to perform the reprogramming of a 
simple/complex application. 
 
Quantitate KPI: 
Simple application: < 5 min 
Complex application: < 5 min  
 
Continuous tracking of robot's pose 
 
Verbal definition of KPI: Possibility to continuously monitor mobile robot's pose (position and 
orientation). 
 
Way to measure KPI and data source: 
Simple application: Go from Location A to B -> Go from Location B to C 
Complex application: Go from Location A to B -> Perform task X -> Go from Location B to C 
 
The measure of the KPI is performed by recording the mobile robot's position and orientation while 
performing of a simple/complex application. 
 
Quantitate KPI: Robot's pose availability: > 99% of the time within the coverage area 
 
Accuracy 
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Verbal definition of KPI: Accuracy of estimated pose (position and orientation) of mobile robots. 
 
Way to measure KPI and data source: 
Simple application: Go from Location A to B -> Go from Location B to C 
Complex application: Go from Location A to B -> Perform task X -> Go from Location B to C 
 
The measure of the KPI is performed by recording the mobile robot's position and orientation while 
performing of a simple/complex application and compare the results with a ground truth system. The ground 
truth that we used is Qualisys System, which is position tracking system based on infra red signal, with 
accuracy of +/- 2mm. The robot's pose error can be reported statistically using cumulative distribution 
function (CDF)  
 
Quantitate KPI: 2D Position error: < 20 cm, 90% of the time, 2D Orientation error: < 20 degrees, 90% of 
the time 
 
Update rate 
 
Verbal definition of KPI: Update rate (refresh rate) of estimated pose (position and orientation) of mobile 
robots. 
 
Way to measure KPI and data source: 
Simple application: Go from Location A to B -> Go from Location B to C 
Complex application: Go from Location A to B -> Perform task X -> Go from Location B to C 
 
The measure of the KPI is performed by recording the mobile robot's position and orientation while 
performing of a simple/complex application and calculate the refresh period for each new pose estimates.  
 
Quantitate KPI: Robot's pose update rate: > 5 Hz, 90% of the time 
 
Set-up time 
 
Verbal definition of KPI: Amount of time needed for setting up the use-case experiment conditions 
(including change of tools, fixtures, programs etc) 
 
Way to measure KPI and data source: The measure of the KPI is performed by recording the time it 
takes to setup the use-case for programming of a simple/complex application. 
 
Quantitate KPI: < 4hr (includes mapping and setting up locations, graphs, etc.) 
 
Analysis and identification of areas of improvement for Use Case 13 
The improvements could be for extending the device library of motion toolbox to cover a larger variety of 
Mobile robots: MiR, UR, other autonomous mobile manipulators, etc. and showing that different brands 
can achieve the assembly by interacting with the same developed interface. The motion class as well as the 
available device primitives can be extended to allow a larger variety of operations. The user interface could 
be improved to be more intuitive and therefore save programming time (e.g. add sliders, improve navigation 
in the interface, etc.). Some improvements could be for e.g. to add more details for reconfigurability into 
the GUI interface, add non-blocking execution of skills, extend the KMR toolbox to include parameterized 



 

 
 

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 825196 

35 

manipulator skills/combination of easy programming framework for manipulator with mobile robot skills, 
and finally extend the UWB module to include autocalibration of anchors positions. 

A.14 Use Case 14 - Virtualization of a robot cell with a real controller 

This use case enables the control of simulated manufacturing hardware using a real controller. The 
simulated hardware is represented in a real-time 3D-environment which can be used for demonstrating 
actual system functionality, training employees, virtual commissioning and testing production operations 
for new parts. These activities can be done before the system even exists or after commissioning, when they 
can be done without disturbing the ongoing production. This way changes can be made and tested without 
losing valuable production time. It also means that the layout design can be iterated multiple times before 
committing to the final one. Since the control software used is identical to the real-world control software 
all master data created with the virtual system can be transferred to the real one which speeds up the ramp-
up phase of the system. The key element with this module is that the control software thinks that it is 
controlling a physical system. This way the behaviour of the system stays identical between the physical 
and virtual counterparts. It also means that all of the skills learned with one version will directly translate 
to the other one. This use case simulates production on a flow/process level and does not simulate the 
internal processes of machine tools or other similar devices in the system. The goal of the demonstrator is 
to reduce lost production time during training and re-configuration by moving the work to a virtual 
counterpart/environment. 
 
Re-configure time 
 
Verbal definition of KPI: The amount of time can be saved from the re-configuration/introduction of a 
new part into the system. 
 
Way to measure KPI and data source: Time saved (%) when configuring the cell using a virtual 
counterpart instead of the physical cell. This can be measured in two datasets in which the first is done with 
the virtual cell and the latter is done with a physical cell. The time saved is the difference in times between 
these two. 
 
Quantitate KPI: ~20-25% of re-configure time can be saved. 
 
Training time 
 
Verbal definition of KPI: The percentage of allocated training time that can be carried out virtually. 
 
Way to measure KPI and data source: Production time saved when employees are trained with a 
virtual system instead of a physical one. This is measured as the amount of training time that can be carried 
out virtually. 
 
Quantitate KPI: ~80% of allocated training time can be carried out virtually. 
 
Technology swap feasibility: 
 
Verbal definition of KPI: The percentage of system components (HW/SW) that can be swapped for 
similar ones without major changes to other components during the lifecycle of the demonstrator. 
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Way to measure KPI and data source: Estimate of the amount of components (%) that are not specific 
for the operation of the system. E.g. the simulation model, hardware, etc. 
 
Quantitate KPI: 
What can be swapped: Simulation workstation and peripherals, Simulation software, The cell controller 
(hardware that MMS runs on) 
 
What cannot be swapped: Fastems specific software (MMS), Operating system (Windows) 
 
In general ~75% of system components (HW/SW) can be swapped for similar ones without major changes 
to other components. 
 
Labour safety 
 
Verbal definition of KPI: Percentage of allocated training time can be carried out virtually. 
 
Way to measure KPI and data source: Practically this is the same amount of time (%) that is spent 
training or creating part master data. Depends highly on the customer and use cases. Measured as the 
percentage of time that operators can do work outside of the factory floor or other hazardous environments 
with the virtual system. 
 
Quantitate KPI: ~80% of allocated training time can be carried out virtually. 
 
Analysis and identification of areas of improvement for Use Case 14 
The use case leans heavily on the principle of shifting on-line tasks, like training and new part introduction 
and testing, to virtual model of a robotic cell. The majority of the saved on-line time can thus be used for 
producing parts on the production system, instead of carrying out the training tasks with it. This is at the 
heart of the monetary benefit of the use case. To aid in evaluation of the feasibility of the investment to 
such a system, a more detailed description of the tasks that can be transferred to the virtual model would 
help in estimating whether the investment to such a system makes sense. This way the KPI's of the of the 
system could also be formulated in more detail to also further elaborate the return-on-investment analysis. 
The use case could be better integrated into the MMS UI so that no additional software is needed to run the 
use case. This would make the use case more cost-effective and user friendly. This would also reduce the 
hardware requirements as a dedicated PC would no longer be needed. The use case could be improved to 
provide more details about the simulated manufacturing process. This means that various KPIs could be 
integrated into the simulated environment and then these metrics would be displayed to the user. 

A.15 Use Case 15 - Industrial IoT Robustness Simulation 

The Industrial IoT Robustness Simulation provides an extensible and highly configurable discrete event 
simulator. The implementation of different simulation models is realizing a simulation for wireless sensor 
networks in a 3D environment. The two modules that are emphasized by the TRINITY project are "Network 
Device Positioning" and "Cyber-security Fallback Simulation". Both new software artifacts are extending 
the core functionality of a software project called NordicSim - Network Device Simulation. The NordicSim 
project is an open-source library and to simulate wireless sensor networks in order to support the integration 
process of such IIoT networks in the factory domain. Figure 1 shows the virtual IIoT network applied to 
the CAD model of the Research Factory at Fraunhofer IWU. The blue anchor nodes are establishing an 
indoor real time localization system (RTLS) and the green nodes are mobile and battery powered devices 
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that are localized by the infrastructure. The scenario is also implemented as real RTLS inside the real factory 
hall. This scenario will be used as example for the upcoming KPI descriptions. 

 
Figure 7 CAD model of the Research Factory at Fraunhofer IWU with an IIoT network (blue and green nodes) 

 
Reconfigurability and Expandability of plant and network layout 
 
Verbal definition of KPI: In the domain of real Industrial IoT applications a reconstruction of a facility or 
any change of the network (reconfiguration or expansion) causes additional costs until the network is fully 
operating again. The repositioning, removal or extension of devices needs to be estimated or tested before 
a final reinstallation. The infrastructure like power or network supplies need to be updated. Often a software 
reconfiguration is needed at last. To predict the impact of changes, different scenarios can be simulated 
before any construction work. 
 
Way to measure KPI and data source: The time durations between the work on a real network and a 
simulation scenario are estimated and compared. 
 
Quantitate KPI: Typically, the reconfiguration or expansion of a real IIoT network takes several days or 
weeks, based on a full time equivalent (FTE) of 8 hours per day. So, a duration between 10 and 40 working 
hours is a common value. The higher the impact on reorganizing the devices is, the more working hours 
need to be assessed for planning, installation, and software reconfiguration. So, the working hours needed 
to execute any change on the network layout super scales with the amount of hardware changes.  In contrast 
to that, the reconfiguration of a simulation scenario is faster by magnitudes and can be typically done in 
less than one FTE. The first development of the scenario can be time consuming, depending on the software 
interface, but it is not considered, since the scope of the KPI is just the reconfigurability or expandability 
of the scenario. The only effort is to update configuration files and meta data that is used as input by the 
simulation models. In general, the changeability of a simulated scenario is likely up to ten times faster 
compared to real network installations. 
 
Resource saving compared to real hardware testbed 
 
Verbal definition of KPI: For real IIoT networks there are several cost items. The hardware cost increases 
roughly linear with each new IIoT device or peripheral hardware like cables or power supplies. Often, there 
is a management server or services needed that could cost license fees. Finally, the cost of staff is allocated 
to install and operate the network. The cost of an IIoT simulation with the NordicSim framework is only 
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the amount of time a software developer or engineer must invest. There are no commercial licenses or 
additional hardware costs needed to work with the environment. 
 
Way to measure KPI and data source: The cost of staff can be assumed to be the same per FTE, because 
for both situations highly educated staff is needed. Therefore, the main difference is the hardware invest 
and potential license fees. 
 
Quantitate KPI: The simulated network is used to substitute a real testbed installation, in order to evaluate 
circumstances before a fully qualified real network operation. The real testbed shown in Figure 1 is such a 
test environment. The hardware cost of nearly 10.000 EUR for the RTLS server, eight anchor nodes, ten 
mobile devices and several 100m of cables and finally the cost for installation with roughly 2 FTE can be 
substituted completed by the simulation. 
 
Analysis and identification of areas of improvement for Use Case 15: 
The simulation of IIoT networks is not new in the research domain. Unfortunately, the integration in project 
planning and engineering processes is quite uncommon. The more expensive or mission critical an IIoT 
environment is, the more beneficial a simulation will be beforehand. Consequently, there is a need for 
reliable and integratable simulation models, which can be used in engineering and organizational processes. 
The NordicSim framework is an open source and highly expandable bundle of software packages that can 
be integrated into various number of software systems. 

A.16 Use Case 16 - Handling and assembly module 

The handling and assembly demonstrator performs the assembly of printed circuit boards with electronic 
components. The workstation is currently operated by a company that produces lighting systems. In the 
workstation’s current state two worker are present and each assembles half of the electronic components.  A 
demonstrator was developed that partly automatises the workstation with the help of one industrial robot. 
The robot will handle half of the assembly operations of the workstation. The end result of the demonstrator 
is depicted in Figure 2. In order to evaluate the performance of the demonstrator, relevant key performance 
indicators (KPI) were identified and used. 

 
Figure 8 Handling and assembly demonstrator in the facilities of Fraunhofer IWU 

 
Programming effort for set-up 
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Verbal definition of KPI: The demonstrator needs a large amount of programming effort for the set-up. 
Therefore, the amount of necessary programming time is used as a KPI for our demonstrator. A distinction 
between the initial set-up and the integration of a new component is made. Programming time regards the 
robot, the handling process, the visual system, and the visual detection of the components. 
 
Way to measure KPI and data source: The data source is based on the working hours of the robot 
programmer, that was responsible for the set-up of the demonstrator. 
 
Quantitate KPI: The working hours necessary for the set-up of the demonstrator was 2 months, i.e. 318 
hours. This includes robot programming, path planning, vision system set-up, component recognition and 
testing. In order to integrate a new component after the initial set-up, another week, i.e. 39 hours, of 
programming and testing is necessary until the system is able to assemble the new component reliably. 
 
Hardware costs 
 
Verbal definition of KPI: We calculated the overall hardware costs of the demonstrator to give possible 
end-users an idea, how high the initial investment of the demonstrator would be. The cost sources consist 
of the industrial robot, the vision system, material for the workstation which was mostly aluminium profiles, 
and the working hours for the assembly of the workstation. 70 working hours were needed, which do not 
include the programming effort. The industrial robot had a reach of 930mm, a workload of 7kg and a repeat 
accuracy of +/- 0,03mm. The used vision system’s capabilities are considered insufficient for the assembly 
task, which means that for the end-use application a more expensive vision system with higher capabilities 
is likely necessary. 
 
Way to measure KPI and data source: Material costs could be derived from the actual bill, whereas the 
costs for the robot and for the vision system are derived from the renting contract, since Fraunhofer did not 
by those system. The working hours for the assembly were provided by LP-Montagetechnik. 
 
Quantitate KPI: The estimated amount of the demonstrator’s hardware components is 60.000€. The costs 
consist of: 

• 27.000€ for the robot, 
• 20.000€ for the vision system, 
• 10.000€ for the materials, and 
• 3.000€ for 70 working hours. 

 
Robot cycle time compared to human worker 
 
Verbal definition of KPI: The human worker assembly times must be compared to the assembly times of 
the robot to get an idea of the potential of the system. Therefore, the assembly times of the robot and the 
assembly times of the human worker are measured and compared. To get comparable results, the assembly 
time of the robot is compared with the human worker time of the first workstation, since the robot only 
assembles half of the components, namely the components of the first workstation. 
 
Way to measure KPI and data source: The human worker times were determined with means of methods-
time-measurement (MTM) analysis. LP-Montagetechnik and Fraunhofer IWU conducted such an analysis 
at the workstation to measure the existing human worker times. The assembly times of the robot were 
measured at the laboratory of Fraunhofer IWU after the set-up of the demonstrator. The seven components 
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are the point of reference for the measurements. The human worker assembled those seven components on 
all twelve printed circuit boards. The robot however only assembled the components on one circuit board 
and the average of several rounds is multiplied by twelve to make the assembly of twelve circuit boards 
comparable. 
 
Quantitate KPI: 84 components need to be assembled for the 12 printed circuit boards at workstation one 
with seven components each. A human worker needs 340s for the assembly. To assembly the seven 
components of one printed circuit board, our robot took 123s. This results in an assembly time of 24,6 
minutes for twelve printed circuit boards. Hence, the robot needs 434,12% of the human worker time. To 
state the difference the other way around, the human worker only needs 23% of the robot cycle time. 
Possible improvements are addressed in the closing comments. 
 
Analysis and identification of areas of improvement for Use Case 16: 
Additional closing comments are necessary to give a broader context of the KPIs’ impact. The robot was 
not able to assemble all components that could be assembled by a human. In order to increase the number 
of assembled components, different gripping strategies need to be tested. The robot’s movement speed 
during the experiments was at 50% of the total possible value. The restriction of velocity was to ensure that 
the components are securely handled by the vacuum gripper without detaching and threatening harm to 
workers during the process. Thus, a high potential in reducing the process times exist by increasing the 
robot’s speed. Faster movement velocities, however, require additional adaptations in the gripping system 
in form of the vacuum gripper. 
 
Due to the circumstance that humans were involved in the processes, the use of qualitative KPIs such as 
ergonomics could not be avoided. The implementation of a partly automated system enables further positive 
benefits in the future. These benefits cannot be measured as of right now, but they will be mentioned below. 
The robot did not reach the cycle times of a human worker during our experiments. It does however work 
continuously without the need to take personal times for shorter or longer breaks, which has to be 
considered as well. Due to the orientation of the components, an additional process step was necessary in 
the automatised process. The robot had to put the components on an intermediate fixture, to reorientate the 
components while picking them up again. This step leaves room for improvement for future designs of the 
process. 
 
Further benefits that the use of a robot enable but cannot be measured directly are the possibility to automate 
the documentation process of the production line. This further enables the possibility to gather data that 
allows the company to integrate the processes more easily into existing digital production processes. The 
positives effects on the worker’s ergonomic is also not measurable, but an increase in worker satisfaction 
and a reduction of sick leaves are possible consequences. 

A.17 Use Case 17 - Artificial intelligence based stereo vision system for object 
detection, recognition, classification and pick-up by a robotic arm 

The goal of this use-case demonstration is to automate industrial processes that involves operation with 
different kind of objects which are piled and with arbitrary locations. Traditionally it is hard to automate 
these kinds of processes because sometimes it is impossible to predetermine the positions for these objects. 
To overcome this issue, we develop and integrate 3D and 2D computer vision solutions with AI and robotic 
systems for object detection, localization and classification. 
 
Processing time 
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Verbal definition of KPI: Object detection and classification time 
 
Way to measure KPI and data source: Processing time for the respective functionality, time measured 
after the data has been forwarded to the corresponding function and when it returns result. 
 
Quantitate KPI: 
 

Functionality AVG time (s) stdev (s) 

Object detection 0.101 0.051 

Object classification 0.0132 0.0081 
 
 
 
Data preparation 
 
Verbal definition of KPI: Reduced human involvement for data gathering and labelling process. 
 
Way to measure KPI and data source: Time spent on manual work for data acquisition and preparation 
when data is synthetically generated. 
 
Quantitate KPI: Data gathering and labelling process substituted by synthetic data generation, therefore 
reducing manual process by at least 95% 
 

 
Figure 9 Manual labelling process for object detection tasks 

 
For object detection tasks the manual labelling process includes marking each object with the bounding 
box as illustrated in Figure 3, but for segmentation, every pixel that belongs to the object needs to be 
marked. In dynamic environments, especially in the case of randomly piled objects, a lot of uncertainties 
and different environmental conditions can be present. Ideally, these different conditions also should be 
covered by the training data set in a deep learning-based object detection task to satisfy the precision 
requirements. However, gathering and labelling the real data is a tedious task and requires a certain amount 
of human resources and in some cases, it is complicated to recreate all the possible configurations. To 
alleviate the training data acquisition process and simplify the use of modern computer vision methods in 
industry, synthetic data generation is used. With the synthetic data generation approach, we intend to mimic 
the real data characteristics and diversify the dataset by a systematic rendering of highly realistic synthetic 
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pictures. By tuning image parameters such as an object, camera and light positions, object colour or texture 
and surface properties, brightness, contrast, saturation, a large image diversity can be generated in 
resolution and level of realism depending on the requirements. For the generated data, the labels and masks, 
illustrated in Figure 4, are also automatically generated and therefore significantly decreasing manual work 
required for data gathering and labelling process. With this method the data generation can be almost fully 
automated. Some manual adjustments from use-case to use-case are required, whereas this manual process 
falls below <5% when compared to manual data labelling. In total for object detection task, 
manual labeling of 2200 scenes took around 80 hours, whereas for the synthetic data generation the required 
manual process was about 30 minutes, reducing the manual process by ~99%.  
 

 
Figure 10 Scene including the plastic bottle- and the reconstructed metal can 3D models (middle) together with the 

corresponding depth image (left) and segmentation masks (right). 

 
Precision of object detection  
 
Verbal definition of KPI: Precision of object detection models trained on synthetically generated data 
 
Way to measure KPI and data source: Ground truth - labelled data of randomly dropped objects that are 
overlapping each other in a pile, the precision aspects are measured on this dataset. 
 
Quantitate KPI: At least one object with an IoU threshold above 0.95 are detected when model has been 
trained on purely synthetic data. 
 
Table 1. Evaluation of object detector performance 

Data distribution Test 1 Test 2 

Real Synthetic Real/ Synthetic 
Ratio % 

Step AP 
@0.5:0.95 

OD 
% 

Step AP 
@0.5:0.95 

OD 
% 

8800 0 100 0 9100 88.61 100 9100 69.22 96.95 

7920 880 90 10 7900 88.61 100 9200 71.04 98.47 

7040 1760 80 20 6000 88.36 100 8000 73.23 100 

6160 2640 70 30 6300 88.65 100 7600 72.83 100 

5280 3520 60 40 6900 88.22 100 7400 72.5 100 

4400 4400 50 50 4400 85.82 100 5000 73.84 100 
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3520 5280 40 60 8000 85.59 100 8700 70.27 100 

2640 6160 30 70 7200 84.39 100 5900 64.57 100 

1760 7040 20 80 7200 84.23 100 4500 63.62 100 

880 7920 10 90 8200 82.59 100 7000 63.25 100 

0 8800 0 100 7700 70.01 100 5000 38.66 100 
 
The performance was evaluated on the test datasets which consist of real data. For each of the acquired 
images in the test datasets, the positions of the bottles were altered. The intensity of lightning and camera 
exposure time was systematically modified to acquire a high diversity of different lighting conditions. Two 
test datasets were gathered and manually labelled, first dataset Test 1 was captured with Intel RealSense 
camera, however, Test 2 was captured with different camera - Zivid. 
 

 
Figure 11 Test 1 dataset 

 
Figure 12 Test 2 dataset 

 
Object detector evaluated on data closer to real training data Test 1 (acquired by the same camera as the 
data on which the AI model was trained) scored similar average precision results when real data amount 
was higher than synthetic data as depicted in Fig. 5(a). This also holds true for higher IoU threshold values 
from 0.85 to 0.95. All the trained models showed similar average precision results in the IoU threshold 
region from 0.5-0.8. The main difference can be seen in the case when the model is trained on purely 
synthetic data, as the precision slightly decreases. 
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Figure 13 Average precision of object detection models on real images over different IoU thresholds, viewed by the 

ratio of real to synthetic data in the training datasets 

 
A different situation can be seen when the object detector is evaluated on a test dataset that contains 
different environmental parameters – Test 2. In this case the synthetic data supplements real data and 
increases average precision, whilst achieving the highest precision on a 50/50 ratio. Similarly, as with the 
evaluation results on Test 1 dataset, also in this case object detector trained on purely synthetic datasets 
showed the least precision. Even though the object detector trained on real data or different combinations 
outperforms the detector trained on purely synthetic data, the main precision aspects in this task are 
connected to the specific use case criteria. Respectively, the KPI is to detect at least one object in the scene 
with an IoU threshold above 0.95. Obtained results on this aspect are depicted in Table 1 under columns 
Object Detected (OD). On both test datasets, the trained models could meet this requirement, except in Test 
2 case, when the model was trained on purely real data and in following 90 / 10 ratio, which shows that the 
KPI has been successfully achieved. 
 
Analysis and identification of areas of improvement for Use Case 17 
The proposed TRINITY use-case demonstration: AI-based stereo vision system deals with the uncertainties 
of the environment by use AI for object detection, recognition and classification in conjunction with robot 
control that includes dynamic trajectory generation to avoid obstacles and successfully complete pick & 
place tasks in the dynamic environment. The system can be trained to detect and estimate the grasp pose of 
different objects that are randomly distributed in a pile, therefore, enabling automation of industrial 
processes involving a different kind of objects with unpredictable positions. It has been developed with a 
focus on the scenario, where bottles and cans are being sorted, however, the Use Case and its modules can 
be adjusted to different scenarios and different industries by usage of ROS and modularity of the system. 
The functionalities of the object detection module could be improved by increasing the flexibility to the 
object types as the system is limited to estimating the grasp pose for longitudinal and symmetrical objects. 

A.18 Use Case 18 - Rapid development, testing and validation of large-scale wireless 
sensor networks for production environment 

The demonstrator showcases a factory digitalization solution bringing predictive maintenance to the non-
digitalized factory while minimizing the costs and factory downtime by using infrastructure as a service 
approach. Using the infrastructure as a service the sensors necessary for predictive maintenance can be 
seamlessly integrated and validated in the factory. We are using the EDI WSN/IoT TestBed as infrastructure 
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as service which provides the ability of large-scale sensor network deployment and additional debug 
features such as energy consumption monitoring etc. 
 
Initial deployment cost for evaluation 
 
Verbal definition of KPI: Investment necessary to test the envisioned idea and evaluate the added value 
of the solution. 
 
Way to measure KPI and data source: Calculate the cost of EDI WSN/IoT TestBed usage as 
Infrastructure as a Service vs off the shelf systems available for purchase. Any custom-made solution would 
exceed the cost of the off the shelf system, so this comparison is considered the worst-case scenario in case 
of the KPI evaluation. We assume the simple need of 10 temperature and relative humidity sensors in the 
deployment site. 
 
Quantitate KPI: The estimated cost by using an off the shelf system are as follows: 

• Base station 490€ 
• 10x T/RH sensors 80€, total 800€ 
• Cloud subscription 90€ 

 
This brings the total cost of the off the shelf components up to approximately 1380€. For a one-month 
period the needed 10 EDI WSN/IoT TestBed workstations can be used for approximately 500€. 
This comparison assumes that the manual work for setup of the system is similar, so it does not need to be 
included in the calculation. 
 
System reconfiguration time 
 
Verbal definition of KPI: Time necessary to remotely reconfigure the deployed system, excluding the 
preparation of the update. 
 
Way to measure KPI and data source: Measure the system downtime while the necessary configuration 
updates are being applied while using EDI WSN/IoT TestBed as Infrastructure as a Service vs off the shelf 
system available for purchase. 
 
Quantitate KPI: The EDI WSN/IoT TestBed workstation applies the update in approximately 1 minute, this 
process can happen parallelly on all workstations. The evaluated off the shelf system does not provide a 
way of updating the system configuration remotely. 
 
Analysis and identification of areas of improvement for Use Case 18: 
The proposed TRINITY use-case demonstration Rapid development, testing and validation of large scale 
wireless sensor networks for production environment deals with the ongoing problem of cost and time 
expenditure in the factory digitalization process allowing for rapid prototyping of the envisioned solution 
with severely reduced costs for the hardware and backend system development by providing a semi plug 
& play IoT system  as Infrastructure as a Service ready to be deployed in the production environment 
without the need of extensive downtime typically necessary when changing the whole equipment. The 
developed demonstration can be improved by providing a wider range of available hardware to expand the 
available plug & play scenarios 
 
 


