

Hardware & software interface for robot programming by
manual guidance

The module for robot programming by manual guidance enables fast and intuitive programming
of new robot tasks without using traditional robot programming systems. Traditional robot
programming approaches require the user to guide and program the robot with its controlling
interface. By handling either a touchscreen or a joystick, the user moves the robot to a desired
position and defines the type of motion to that configuration. This method turns out to be relatively
slow and requires a certain proficiency in robot handling. Our programming by demonstration
modules is based on manual guidance (i.e. kinesthetic teaching), where the operator physically
guides the robot through the desired robot configurations and movements in order to program a
sequence of robot movements that lead to a successful task execution. Kinesthetic teaching can
be used for the programming of point-to-point movements or whole movements (trajectories). The
robot has to be equipped with necessary sensing equipment which enables manual guidance, i.e.
it should enable control in gravity compensation mode. Joint torque sensors or 6-D force-torque
sensor mounted at the end-effector are also be beneficial for kinesthetic guidance.

A Graphical User Interface (GUI) is provided that facilitates this skill acquisition process. In the
developed system, skills are saved in a MongoDB database available in ROS. A general overview
of all main components of this module is shown in Fig. 1. The module uses ROS (Robot Operating
System), which provides the database MongoDB, high level communication, and other
functionalities. While many features and tools are included in ROS, a subset of them is used to
realize manual guidance within the cell: ROS nodes, MongoDB database, topics, services, action
and parameters servers, messages, etc.

Figure 1: Overview of main module components. The GUI is at the core of the module. It receives
triggers from the button interface, which are used to change the control mode of the robot, e.g.
put the robot into gravity compensation mode, and initiate saving and reading the data from the
database (MongoDB-based). The button interface is connected to the GUI via the robot's I/Os.

A button interface can be mounted on the robot arm. It eases the acquisition of data from manual
guidance, as it lowers the effort and shortens the time needed for teaching. The cover houses 2
buttons and 2 switches which are used to trigger various functions that support manual
guidance. An example cover, suitable for Universal robot UR10, can be seen in Fig. 2. The default
settings for this module maps the switch 1 to the gravity compensation control, switch 2 to the
tool exchange system, while both buttons are used to trigger save events. The tool exchange
system is an optional hardware module which enables automatical exchange of the robot's end-
effectors. As the buttons are connected through the robots's I/Os, their states can be read by
observing the states on the robot. This is done through the ROS framework.

Figure 2: The button interface used for manual guidance. The button interface replaces one of
the standard UR-10 joint covers. The button states are connected through the robot controller
I/Os.

The database component is at the back-end of the module. The data acquired by the manual
guidance module should be accessible throughout the entire workcell software framework, which
is based on ROS. For this reason the mongodb_store ROS package is integrated, as it allows all
ROS nodes in the network to access the database. The MongoDB database usually runs on the
same computer that runs the ROS core. After the data for robot programming have been acquired
by manual guidance module and stored in the database, the required motions to execute the task
can be computed.

The graphical user interface, called The Helping Hand, is at the center of the manual guidance
module. The GUI has two tabs: the main tab called Capture controls and the secondary one called
Settings/Configuration. The main tab of the GUI can be seen in Fig. 3. Through this tab, all the
software components are called and triggered. There are two types of skill acquisition: Single
Point Acquisition and Whole Trajectory Acquisition. If a single point is stored in the database it
can later be used for generating point-to-point movements. For the acquisition of whole robot
movements, a dense or even continuous sequence of robot points and corresponding times is
stored. It can be used to record Cartesian space trajectory or a joint space trajectory. The
trajectory is post processed to an extent, as is being encoded as a Dynamic Movement Primitive
(DMPs).

Figure 3: The Helping Hand's main tab called Capture controls.

As mentioned, this module uses the button interface to trigger save events by default.
Nonetheless, to allow the user to have custom signals that trigger custom save events,
configuration file is used. The secondary tab of the GUI can be seen in Fig. 4 and is used to check
the configuration of triggers defined in the YAML configuration file. For the default UR10 module
option, no changes to the configuration file should be necessary. If changes are needed, e.g.
different topics are used to listen to buttons on the robots, the YAML configuration file needs to
be modified. Besides UR robots, we also implemented the interface for Franka Emika Panda
robots.

In order to use the GUI, it needs to be installed with required dependencies. To do that, a package
called Helping Hand needs to be installed. This package contains various tools to facilitate
programming robots by manual guidance. However, the main tool is the provided GUI. Installation
instructions and the open-source package (under a three-clause BSD license) for this module can
be found on the repository.

https://github.com/tgaspar/helping_hand#helping-hand

Figure 4: The Helping Hand's configuration tab. Default settings are displayed in this example.

