

Module name: Wearable AR-based interaction interface for HRC

• Main functionalities:

Increase the human operator awareness, safety and capabilities during a human-collaboration task

in a shared workspace. Software module creates and visualize a dynamic safety hull around the robot

as 3D holograms which are visualized using a wearable display, in this case Microsoft HoloLens.

Similarly, as in module 1, additional user-defined interface components can be created and projected

to the workspace as 3D holograms.

• Technical specifications:

The overall description of the hardware requirements and the different software nodes in the

module are shown in Fig. 9. The state-of-the art head mounted AR display is used to visualize the

user interface components. The headset can operate without any external cables and the 3D

reconstruction of the environment as well as accurate 6-DoF localization of the head pose is

provided by the system utilizing an internal IMU sensor, four spatial-mapping cameras, and a depth

camera. HoloLens is communicating with the Linux-based server using wireless TCP/IP. The Linux

server synchronizes data from the robot to HoloLens and back. The usage of the interface

components is monitored by the Kinect v2 sensor installed at the ceiling.

A modified version of ur_modern_driver and univeral_robot ROS packages are used to establish

communication channel between the robot low-level controller and the projector node. Software

running on HoloLens is responsible for creating and updating the 3D holograms projected on the

workspace.

HoloLens, robot and depth sensor are all connected to a single laptop computer that runs the ROS

Melodic distribution on Ubuntu 18.04 and performs all computing. Right now, only Kinect v2 and

Universal Robot 5 are supported.

Fig. 1 Wearable AR module software nodes and hardware

• Preliminary software configurations:

Before the module can be used, 1) the robot, HoloLens and sensor must be extrinsically calibrated, 2)

placement of the user interface components and size of the virtual safety hull has to be defined and

3) wired communication link between PC and robot as well as wireless link between HoloLens and PC

must established.

• Inputs and outputs:

The data is transferred via a standard ROS transport system with publish / subscribe semantics

between robot, sensor and the server PC.

In figures 10 and 11 are described the topic names and data formats used by the module. The TCP/IP

Server node subscribes to topics /joint_states and /trinity/system_data where the robot joint values

and the task related data are published respectively. The joint values are used to calculate the shape

and position of the safety hull. The text in the virtual information bars and the appearance of other

interface components are based on the system data.

Fig. 2 Description of the data transport layer.

In addition, the TCP/IP Server node subscribes to /trinity/sensor/points topic where the depth

measurements from the sensor are published. The measurements are used to calculate the usage of

the interface components (e.g. is a human hand on the virtual stop button)

Fig. 3 Description of the data transport layer.

Finally, the two-way communication between PC and HoloLens is done using the TCP/IP Server node.

The node communicates with HoloLens using custom TCP packages with fixed length. The module

outs the user interface illustrated in Fig. 12.

• Interface specification:

The main interface components (see Fig. 10) are the same as in module 1 but everything is rendered

in 3D. Interactive buttons (GO, STOP, CONFIRM OBJECT, CONFIRM) are modelled as spheres and

information bar as a 3D plane. The safety fence is rendered as a polygonal mesh having semi-

transparent red texture.

Fig. 4 Wearable AR user interface

• Formats and standards used:

ROS communication layer, ROS-industrial, OpenCV, Microsoft Visual Studio, Unity, Vuforia

• Availability:

Module library: https://github.com/Herrandy/HRC-TUNI.git

• Application scenarios:

https://github.com/Herrandy/HRC-TUNI.git

Industrial assembly.

• Offered for internal / external use

Available for internal/external use.

